Скорость центробежного осаждения формула для ламинарного режима. Расчет скорости осаждения капель при известном их диаметре

Формула скорости оседания частицы в жидкости: где v - скорость оседания, g - ускорение силы тяжести, r - радиус частицы, ρ" - плотность вещества частицы, ρ - плотность жидкости, μ - коэф. вязкости жидкости. Коэф. К зависит от формы частицы и приблизительно равен 0,222 для шаров, 0,143 для дисков и 0,040 для чешуек.

  • - , закон, определяющий силу сопротивления F, испытываемую тв. шаром при его медленном поступат. движении в неогранич. вязкой жидкости: F=6pmirv, где m - коэфф. динамич...

    Физическая энциклопедия

  • - параметры, используемые для описания состоянияполяризации эл.-магн. волн. Введены Дж. Г. Стоксом в 1852. Идеальная плоская монохроматич. волна в общем случае поляризована эллиптически...

    Физическая энциклопедия

  • - связывающая скорость падения в жидкости твердой сферической частицы с ее размерами, ее плотностью. а также плотностью и вязкостью жидкости: ...

    Толковый словарь по почвоведению

  • - в механике текучих сред - формула, задающая предельную скорость, с которой твердые частицы осаждаются в текучей среде...

    Научно-технический энциклопедический словарь

  • - I Сто́кса воротни́к отек шеи, а нередко также головы и верхних конечностей, возникающий в результате сдавления верхней полой вены. Если сдавлена только правая или левая плечеголовная вена, то отек выражен...

    Медицинская энциклопедия

  • - отек шеи, а иногда и лица, рук, верхней части груди и области лопаток, сопровождающийся набуханием кожных вен...

    Большой медицинский словарь

  • - полная атриовентрикулярная сердечная блокада - ред.; приступы временной потери сознания, развивающиеся в результате прекращения кровотока во время желудочковой фибрилляции или асистолы...

    Медицинские термины

  • - Stokes, 1851, - определяющий силу сопротивления, испытываемую твердым шаром при медленном движении в неограниченно вязкой жидкости: ||F = 6p m ru , где F - сила сопротивления, m...

    Геологическая энциклопедия

  • - см. Закон Стокса...

    Геологическая энциклопедия

  • - формула, имеющая вид: где a1, А2,..., Ап - несовместимые события, Общая схема применения Ф. в. г.: если событие В может происходить в разл. условиях, относительно которых сделано п гипотез А1, А2, .....

    Геологическая энциклопедия

  • - формула скорости оседания частицы в жидкости: где v - скорость оседания, g - ускорение силы тяжести, r - радиус частицы, ρ" - плотность вещества частицы, ρ - плотность жидкости, μ...

    Геологическая энциклопедия

  • - закон гидродинамики, определяющий силу сопротивления, к-рая действует на твёрдый шар при его медленном постулат, движении в неогранич. вязкой жидкости. Согласно С. з. сила сопротивления F =6ПИnrv, где n - динамич...

    Большой энциклопедический политехнический словарь

  • - закон, определяющий силу сопротивления F, испытываемую твёрдым шаром при его медленном поступательном движении в неограниченной вязкой жидкости: , где μ - коэффициент вязкости жидкости, r - радиус шара и υ -...
  • - формула преобразования криволинейного интеграла по замкнутому контуру L в поверхностный интеграл по поверхности Σ, ограниченной контуром L. С. ф. имеет вид: , причём...

    Большая Советская энциклопедия

  • - : сила сопротивления - испытываемая твердым шаром при его медленном поступательном движении в неограниченно вязкой жидкости, F=6pmru, где r - радиус шара, m - коэффициент вязкости жидкости, u - скорость движения шара....
  • - СТОКСА формула - формула, связывающая криволинейный интеграл по замкнутому контуру с поверхностным интегралом по поверхности, ограниченной этим контуром. Предложена Дж. Г. Стоксом в 1854...

    Большой энциклопедический словарь

"ФОРМУЛА СТОКСА" в книгах

ДЫХАНИЕ ЧЕЙН-СТОКСА

Из книги Скуки не было. Первая книга воспоминаний автора Сарнов Бенедикт Михайлович

ДЫХАНИЕ ЧЕЙН-СТОКСА О Сталине я в жизни думал разное. Борис Слуцкий 1Смысл странноватого названия этой главы поймут не все. Но многие из тех, для кого 5 марта 1953 года стало важной вехой в их жизни, сразу сообразят, в чем тут дело.А для меня за этими словами встает еще и такая

Из книги Максвелл автора Карцев Владимир Петрович

ЛЕКЦИИ СТОКСА, СЕМИНАРЫ ГОПКИНСА, СОВЕТЫ ОТЦА К первым кембриджским годам относится и сближение Максвелла с другом Вильяма Томсона Джорджем Габриэлем Стоксом, профессором в Кембридже, который был старше Джеймса на двенадцать лет. Стокс был лукасианским профессором

Его формула

Из книги Изнанка экрана автора Марягин Леонид

Его формула Незадолго до смерти Довженко мечтал уйти с «Мосфильма» и образовать свою студию. Я, юный, влюбленный в мосфильмовский гигант, был ошарашен.- Чем вам не нравится «Мосфильм»? - робко спросил я у Александра Петровича.И получил многозначительный ответ:- На

Формула

Из книги Размышления о личном развитии автора Адизес Ицхак Калдерон

Формула В моем понимании, формула, правящая миром, – не что иное, как абсолютная, чистая любовь (или, другими словами, полная интеграция). А интеграция является функцией взаимного уважения и доверия.Итак, где же был Бог во время Холокоста? Формула объясняет, что произошло:

Формула

Из книги Освободитесь от плохих долгов автора Кийосаки Роберт Тору

Формула Вы сделали первые четыре шага и теперь готовы перейти к формуле ликвидации плохих долгов. Шаги с 5-го по 10-й приведут вас к конкретной формуле, которую мы с Робертом использовали для того, чтобы избавиться от всех тех долгов, которые висели на нас неподъемным

Формула

автора Диксон Питер Р.

Формула Безубыточный объем (БО) - это объем продаж, необходимый при цене продажи р, который создает прибыль, равную расчетным постоянным издержкам. При безубыточном объеме все постоянные и переменные издержки покрываются.Безубыточная продажа = БО = ПИ/МД=ПИ/(Ц-

Формула

Из книги Управление маркетингом автора Диксон Питер Р.

Формула Специалисту, занимающемуся маркетинговым планированием для точной регуляции цены требуется знание двух формул.Снижение цены способствует увеличению валовой прибыли в том случае, если%?Оn > [(%?Ц) / % ТП - %?Ц)] х 100%,где %?Оn - процент увеличения объема продаж;%?Ц -

Формула ОДП

Из книги Инфобизнес на полную мощность [Удвоение продаж] автора Парабеллум Андрей Алексеевич

Формула ОДП Первый промокает можно запустить уже сегодня и повторять его каждую неделю. Запись не нужно пускать в открытый доступ. Промокает должен быть немного обучающим, но в первую очередь – активно продающим тренинг.Как строить продажную презентацию? Вспомните

Формула

Из книги Курс русской истории (Лекции I-XXXII) автора Ключевский Василий Осипович

Формула Таким образом, удельный порядок держался на двух основаниях, на географическом и на политическом: он создан был совместным действием природы страны и её колонизации. 1) При содействии физических особенностей Верхневолжской Руси колонизация выводила здесь мелкие

Из книги Жизнь – игра. Правила победителей автора Зюзгинов Александр

Формула пути – формула жизни Жизнь – это путешествие в самый неизвестный уголок во всем мире – Себя. Никто не знает своих границ. И я уверен, что их нет совсем. Я не знаю, что я возьму с собой по дороге, от чего откажусь, что не замечу, о чем буду плакать, смеяться, сожалеть. Я

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

осаждение

твердых частиц

под действием силы тяжести

Методические указания

по курсам «Процессы и аппараты пищевых производств»

и «Процессы и аппараты химических производств»

для студентов специальностей

дневной и заочной форм обучения

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2006


Цель работы : ознакомится с методами расчета скорости осаждения под действием силы тяжести и экспериментально проверить результаты расчета.

ОСНОВНЫЕ ПОНЯТИЯ

Проведение ряда процессов химической технологии связано с движением твердых тел в капельных жидкостях и газах. К таким процессам относятся осаждение частиц из суспензий и пылей под действием инерционных или центробежных сил, механическое перемешивание в жидких средах и другие. Изучение закономерностей этих процессов составляет внешнюю задачу гидродинамики.

На твердую частицу, осаждающуюся под действием силы тяжести, действуют следующие силы: сила тяжести, выталкивающая архимедова сила и сила сопротивления среды. Основная трудность расчета скорости осаждения заключается в том, что сила сопротивления среды зависит от режима движения частицы, а следовательно, и от скорости осаждения:

где F - площадь проекции тела на плоскость, перпендикулярную направле-


нию его движения, м2;

ρ- плотность среды, кг/м3;

ω- скорость осаждения, м/с;

φ- коэффициент сопротивления среды, зависящий от режима движе -

При ламинарном движении, наблюдающемся при небольших скоростях и малых размерах тел или при высокой вязкости среды, тело окружено пограничным слоем жидкости и плавно обтекается потоком. Сопротивление среды в таких условиях обусловлено преодолением лишь сил внутреннего трения и описывается законом Стокса:

С развитием турбулентности потока (например, с увеличением скорости движения тела и его размеров) все большую роль начинают играть силы инерции. Под действием этих сил пограничный слой отрывается от поверхности тела, что приводит к образованию зоны беспорядочных завихрений за движущимся телом и понижению давления в этой зоне. При этом разность давлений в лобовой и корковой частях обтекаемого тела резко возрастает. При Re>500 роль лобового сопротивления становится преобладающей, а сопротивлением трения можно практически пренебречь. Режим осаждения становится автомодельным по отношению к критерию Рейнольдса, т. е. коэффициент сопротивления среды φ не зависит от критерия Re. При 500 < Re < 2·105 сопротивлений среды описывается квадратичным законом сопротивление Ньютона:

φ = 0.44 = const. (3)

При переходном режиме осаждения, когда 2 ≤ Re ≤ 500, силы трения и силы инерции соизмеримы и ни одной из них пренебрегать нельзя. В этой области сопротивление среды описывается промежуточным законом:

При движении тела в жидкости его скорость будет возрастать до тех пор, пока сила сопротивления среды не уравновесит тела за вычетом выталкивающей силы. Далее движение частицы происходит по инерции с постоянной скоростью, которая называется скоростью осаждения.

1 . Из уравнения баланса сил действующих на осажденную частицу, получим выражение для расчета скорости осаждения:

, (5)

где ρч - плотность твердой частицы, кг/м3;

g - ускорение силы тяжести, м/с2.

Подробно вывод уравнения (5) изучить по .

При расчете скорости осаждения по уравнению (5) пользуются методом последовательных приближений, и расчеты выполняются в следующей последовательности:

1) задаются произвольным значением критерия Re;

2) по одному из уравнений (3)-(4) рассчитывают коэффициент со-

противления среды φ;

3) по уравнению (5) определяют скорость осаждения;

4) определяют величину критерия Re:

;

5) определяют погрешность:

Δ = (Re зад - Re выч)/ Re зад;

6) если Δ > 0.03, то задаются новым значением критерия

Re зад= Re зад ·(1-Δ) и весь расчет повторяется заново;

7) расчеты проводятся до тех пор, пока Δ ≤ 0.03.

Уравнение (5) является наиболее точным, но неудобно для практического пользования.

2. Вследствие трудоемкости метода последовательных приближений более удобно для определения скорости осаждения пользоваться методом, предложенным. Этот метод основан на преобразовании уравнения (5) к критериальному виду: Re= f(Ar). Подробно вывод критериальных уравнений вида Re= f(Ar) можно изучить по .


В результате преобразования уравнения (5) получены следующие расчетные зависимости:

для ламинарного режима осаждения при Аr ≤ 36:

для переходного режима осаждения при 36 < Ar ≤ 83000:

; (7)

для турбулентного режима осаждения при Ar > 83000:

; (8)

где Аr - критерий Архимеда .

Расчеты выполняются в следующей последовательности:

1) определяется величина критерия Архимеда;

2) по найденному значению критерия Архимеда определяется режим осаждения;

3) по одному из уравнений (6)-(8) определяется величина критерия Рейнольдса;

4) рассчитывается скорость осаждения:

https://pandia.ru/text/79/041/images/image010_11.gif" width="168" height="49"> . (9)

4 . Для расчета скорости осаждения используется обобщенный графоаналитический метод, пригодный при любом режиме осаждения. При этом используется критериальная зависимость вида: Ly = f(Ar),

где Ly - критерий Лященко . (10)

Определение скорости осаждения производят следующим образом:

1) определяют критерий Архимеда;

2) по найденному значению критерия Ar, по рис. 1 определяют величину критерия Lу;

3) вычисляют скорость осаждения:

. (11)

Рис.1 Зависимость критериев Лященко и Рейнольдса от критерия Архимеда

для осаждения одиночной частицы в неподвижной среде:

1-шарообразные частицы; 2-округленные;

3- угловатые; 4-продолговатые; 5- пластинчатые.

МЕТОДИКА ЭКСПЕРИМЕНТА

Экспериментальная установка состоит из трех вертикальных цилиндров 1 (рис.2), в которых находятся жидкости с различными физическими свойствами.

Цилиндры закреплены между нижним 9 и верхним 10 основаниями. В верхнем основании имеется паз, в котором перемещается подвижная пластина 3. Сверху подвижная пластина накрыта неподвижной пластиной 2. Подвижная пластина совершает возвратно поступательное движение под действием втягивающего реле 4, которое включается при нажатии кнопки 7 и возвращается в исходное положение при ее отпускании. Кнопка 7 одновременно служит для управления электросекундометром 5. При нажа­тии кнопки секундомер включается, а при её отпускании останавливается. Сброс показаний секундомера осуществляется рукояткой 6.

Испытуемая частица 8 помещается в одно из отверстий неподвижной пластины 2.

Путь пройденный частицей измеряется линейкой 11 с точностью ±0.5 мм, время осаждения измеряется секундомером 5 с точность до ±0.5 с. Скорость осаждения рассчитывается по формуле:

Для исключения систематической ошибки измерений при измерении времени осаждения глаз наблюдателя должен находиться на уровне нижнего основания.

Эквивалентный диаметр частиц неправильной формы определяется

по формуле:

где М - масса частицы, кг.

Масса частицы определяется путем пятикратного взвешивания

10-20 г на аналитических весах.

апоапо

Рис.2. Схема экспериментальной установки:

1- цилиндр с жидкостью, 2 – неподвижная пластина,

3 – подвижная пластина, 4 – втягивающее реле,

5 – электросекундомер, 6 – рукоятка сброса,

7 – кнопка, 8 – испытуемая частица,

9 – нижнее основание, 10 – верхнее основание,

11 – линейка, 12 - термометр

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Производят подготовку установки к выполнению опыта. При необходимости в цилиндры доливают соответствующие жидкости так, чтобы их уровень достигал верхнего основания.

2. Получают у преподавателя или лаборанта испытуемые частицы и определяют их эквивалентный диаметр.

3. Испытуемая частица помещается в одно из отверстий верхней неподвижной пластины.

4. Нажимают кнопку 7 (рис. 2). При этом включается втягивающее реле, подвижная пластина перемещается, отверстия в неподвижной и подвижной пластинах и верхнем основании совпадают, и испытуемая частица проваливается в цилиндр с жидкостью и начинает осаждаться. Одновременно включается электоросекундомер 5.

5. Кнопку 7 держат нажатой до тех пор, пока частица не достигнет дна сосуда. В момент касания частицей дна кнопку отпускают. При этом секундомер останавливается.

6. Время осаждения и путь, пройденный частицей, заносят в журнал наблюдений.

7. Каждый опыт повторяют 5-6 раз.

8. Результаты измерений заносят в табл. 1.

Таблица 1

Эквивален-

Плотность

Плотность жидкости

Вязкость

жидкости

пройденный частицей,

Время осаж-дения

Скорость

осаждения

9. Производят расчет скорости осаждения:

а) по уравнению (5);

б) по методу, по уравнениям (;

в) по интерполяционному уравнению (9);

г) графоаналитическим методом.

10. Сравнивают результаты расчета с данными эксперимента и делают выводы о точности и трудоемкости каждого метода расчета.

11. Результаты расчета сводят в табл. 2.

Средняя скорость

осаждения и

доверительные

По ур-нию (5)

По ур-ням (6)-(8)

По ур-нию (9)

По ур-нию (11)

откло-нение

откло-нение

откло-нение

откло-нение

Таблица 2

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Для повышения надежности экспериментальных данных и оценки погрешности измерений экспериментальное определение скорости осаждения необходимо повторить 5-7 раз одной и той же частицей.

Предварительные эксперименты показали, что при достаточно большом числе измерений экспериментальное значение скорости осаждения подчиняется нормальному закону распределения. Поэтому оценку точности произведем путем определения оценок и доверительных границ для параметров нормативного распределения по ГОСТ.11.004-94.

Несмещенной для генерального среднего нормального распределения является выборочное среднее (среднеарифметическое), определяемое по формуле:

https://pandia.ru/text/79/041/images/image018_8.gif" width="100" height="53">, (12)

где Хi - совокупность наблюдаемых значений случайной величины (ско

рость осаждения);

n - обьем выборки (число измерений).

Среднеквадратичная погрешность измерения:

https://pandia.ru/text/79/041/images/image021_7.gif" width="87" height="25">. (14)

Значение коэффициента Мк определяется по табл. 3 в зависимости от числа измерений К=n-1.

Таблица 3

измерений

Коэффициент

Несмещенная оценка для дисперсии нормального распределения:

Верхняя доверительная граница для генерального среднего:

где tγ - квантиль распределения Стьюдента для доверительной вероятно-

сти (определяется по табл. 4).

Значение коэффициентов tγ при доверительной вероятности γ

Отчет о работе оформляется в тетради. Он должен содержать:

1) название лабораторной работы;

2) формулировку цели работы;

3) основные понятия, определения и расчетные формулы;

4) схему установки;

5) результаты наблюдений, сведенные в таблицу;

6) все промежуточные расчеты;

7) структурную схему расчета скорости осаждения;

8) распечатку расчета скорости осаждения на ЭВМ;

9) таблицу сравнения расчетных и экспериментальных данных;

10) анализ полученных результатов и выводы.

Вопросы для самопроверки

1. Что называется скоростью осаждения?

2. Дайте качественное и количественное описание режимов осаждения?

3. Какие силы определяют сопротивление среды при ламинарном режиме осаждения?

4. Какие силы определяют сопротивление среды при турбулентном режиме осаждения?

5. Опишите кинетику осаждения частицы под действием силы тяжести. Составте уравнение баланса под действием сил действующих на частицу.

Литература

1. , Попов и аппараты пищевых производств. – М: Агропромиздат, 1985.-503с.

2. С и др. Процессы и аппараты пищевых производств:
Учебник для вузов. - М.: Колос,1999 г.504с

3. , Королев и аппараты пищевых
производств: Учебник для вузов.- М.: Агропромиздат, 1991.-
432 с.

4. «Основные процессы и аппараты химической
технологии». Изд. 6-е М.: Госхимиздат, 1975.-756 с.

5. Лабораторный практикум по курсу «Процессы и аппараты
пищевых производств»/Под ред. .- Изд.2-е, доп.-
М.: Пищ. пр-ть, 1976.-270с.

6.Лабораторный практикум по процессам и аппаратам пищевых
производств /Под ред. СМ. Гребенюка.- М.:Легкая и пищевая
промышленность, 1981.-152 с

7.Руководство к практическим занятиям в лаборатории
процессов и аппаратов химической технологии./ Под

Редакцией, из-е 4-е., Л.; 1975.-255с.

осаждение твердых частиц

под действием силы тяжести

Методические указания

к выполнению лабораторной работы

Составили:

Рецензент

Редактор

Лицензия ИД № 000 от 14.11.01

Подписано в печать Формат 60х84 1/16

Бум. тип. Усл. печ. л. Уч.-изд. л.

Тираж экз. Заказ Бесплатно

Саратовский государственный технический университет

Саратов, Политехническая ул., 77

Отпечатано в РИЦ СГТУ. Саратов, Политехническая ул., 77

Осаждение - это процесс разделения жидких или газовых неоднородных систем, при котором взвешенные в жидкости или газе твердые или жидкие частицы отделяются от сплошной фазы под действием силы тяжести, сил инерции (в том числе центробежных) или электростатических сил.

Осаждение, происходящее под действием силы тяжести, называется отстаиванием. В основное отстаивание применяется для предварительного, грубого разделения неоднородных систем.

Основной характеристикой рассматриваемого процесса разделения суспензий и газовзвесей является скорость осаждения, т.е. скорость относительного движения твердых частиц. При определении этой скорости необходимо различать свободное и стесненное осаждение. Свободное осаждение, наблюдающееся в разбавленных суспензиях и газовзвесях, характеризуется отсутствием взаимного влияния частиц дисперсной фазы, т.е. каждая из них ведет себя как одиночная частица в окружающей сплошной среде.

С ростом концентрации твердой фазы, благодаря взаимному влиянию пограничных слоев и столкновения соседних твердых частиц, осаждение становится стесненным, сопротивление частиц потоку возрастает и скорость их движения падает.

Рассмотрим прямолинейное равномерное движение

частицы, подчиняющееся закону Ньютона. При движении

частица встречает сопротивление среды, которое может

быть определено

где S ч - проекция поперечного сечения частицы на

направление ее движения, м 2 ; р 0 - плотность среды, кг/м 3 ;

w ч - скорость частицы, м/с; ς ч - аэродинамический

коэффициент сопротивления частицы. Коэффициент сопротивления частицы ς ч зависит от числа Рейнольдса Re v . Для шаровой частицы



здесь μ 0 - динамическая вязкость воздуха (газа), Па-с; d ч, -диаметр частицы, м.

Эта формула выражает закон Стокса: сила сопротивления, испытываемая твердым шаровым телом при медленном движении в неограниченной вязкой среде, прямо пропорциональна скорости поступательного движения, диаметру тела и вязкости среды.

Закон Стокса применим при ламинарном движении частиц, когда Re ч <2. Область применения закона Стокса практически - определяется размерами частиц и требуемой точностью: при 16·10 -4 < d ч < 30·10 -4 см, неточность составляет 1 %; при 1,6·10-4 < d ч <70·10 -4 см - 10 %. Если допустима большая неточность, можно распространить формулу на область 10 -5

Для точных вычислений в закон Стокса вводится поправка Кенингема С к для частиц размером 0,2-2,0 мкм:

Пылевые частицы малых размеров участвуют в броуновском движении - беспорядочном хаотическом перемещении частиц под действием ударов молекул. Чем меньше размер частицы, тем большую роль в ее перемещении играет броуновское движение.

Скорость осаждения и величина броуновского смещения соизмеримы для частиц, начиная примерно с 0,5 мкм. С уменьшением размера частиц скорость осаждения резко снижается и возрастает броуновское смещение. Для частиц размером 0,05...0,02 мкм оно уже на два - три порядка превышает путь частицы при свободном падении. Поэтому высокодисперсные аэрозольные частицы практически не осаждаются, а благодаря броуновскому движению перемещаются в любом направлении.

Если рассматривается движение нешарообразной частицы, в расчетных формулах значение ς ч умножается на динамический коэффициент формы z вместо d ч вводят

эквивалентный диаметр: z=d э 3 /d ч 3

где d э - эквивалентный диаметр частицы, равный диаметру шара, объем которого равен объему данной частицы, м.

В движении частицы, осаждающейся под действием силы тяжести в неподвижной среде, можно различить три стадии: начальной момент падения; движение с увеличением скорости до того момента, пока силы сопротивления и силы тяжести не уравновесятся; равномерное движение с постоянной скоростью. Первые две стадии имеют малую продолжительность.

ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ

ВВЕДЕНИЕ

В промышленности неоднородные системы, к которым относятся суспензии, эмульсии, пены, пыли, туманы, нередко приходится разделять на составные части.

Методы разделения выбирают в зависимости от агрегатного состояния фаз (газообразной, жидкостной и твердой), а также физических и химических свойств среды (плотность, вязкость, агрессивность и т. д.). Принимаются во внимание капитальные и эксплуатационные расходы.

В зависимости от относительного движения фаз различают два метода разделения: осаждение и фильтрование . В процессе осаждения частицы дисперсной фазы движутся относительно сплошной среды. При фильтровании - наоборот.

Процессы осаждения осуществляются в полях механических сил (гравитационном и центробежном) и в электрическом поле.

Отстаивание является частным случаем процесса осаждения и протекает под действием гравитационной силы. Движущей силой процесса отстаивания является разность между силой тяжести и выталкивающей силой (силой Архимеда).

Отстаивание применяют для грубого разделения суспензий, эмульсий и пылей. Характеризуется низкой скоростью процесса и низким эффектом разделения, т. е. отстаиванием не удается полностью разделить неоднородную систему. В то же время простое аппаратурное оформление процесса и низкие энергетические затраты определяют его широкое применение в различных отраслях промышленности.

Отстаивание проводится в аппаратах, называемых отстойниками периодического, полунепрерывного и непрерывного действия.

С целью увеличения скорости процесса разделения суспензий и эмульсий процесс осаждения проводят под действием центробежной силы в машинах, которые называются центрифугами .

Центрифуги по принципу действия делятся на фильтрующие и отстойные . По характеру протекания процесса разделения отстойные центрифуги в основном аналогичны отстойникам, поэтому они называются отстойными центрифугами.

Процесс разделения суспензий в отстойных центрифугах складывается из стадий осаждения твердых частиц под действием центробежной силы на стенках барабана и уплотнения частиц.

Процесс разделения в центрифугах происходит не только быстрее, но и качественнее, что характеризует степень технического совершенства данного оборудования.

Инженерный расчет процессов разделения лежит в основе правильного подбора оборудования и его эффективного использования.

Пример 1

Выполнить материальный расчет отстойника для разделения неоднородной системы по следующим исходным данным:

Масса исходной суспензии, кг

Продолжительность осаждения, ч

Концентрация вещества дисперсной среды, %

В системе

В осветленной жидкости

Во влажном осадке

Плотность вещества дисперсной фазы, кг/м 3 ρ 1 =2200

Плотность вещества дисперсной среды, кг/м 3 ρ 2 =1000

1. Масса осветленной жидкости:

2. Масса влажного осадка:

кг

3. Плотность исходной суспензии:

кг/м 3

4. Плотность осветленной жидкости и влажного осадка:

= 1002,19 кг/м 3

= 1261,47 кг/м 3 .

5. Объемы исходной суспензии, осветленной жидкости и влажного осадка:

м 3

м 3

м 3

6. Проверка расчета по балансу объемов:

V c = V ж + V 0 = 4,963 + 0,417 = 5,38 м 3 .

7. Производительность по осветленной жидкости:

Скорость осаждения

Существует несколько методов расчета скорости осаждения частиц. Обычно под скоростью осаждения понимают скорость движения частицы в среде под действием разности сил тяжести и Архимеда, при условии, что эта разница равна силе сопротивления среды.

Наиболее простой метод расчета скорости по формуле Стокса. Для отстаивания эта формула имеет вид:

где d - размер частицы (диаметр), м;

Вязкость жидкости, Па с.

Ограниченность применения этой формулы заключается в том, что она позволяет достаточно точно рассчитать скорость только для частиц шарообразной формы и применима в тех случаях, когда режим движения частиц является ламинарным (рис. 2, а), критерий Рейнольдса не превышает 2

Рис. 2. Движение твердого тела в жидкости:

а) ламинарный поток;

б) турбулентный поток;

в) силы, действующие на движущуюся частицу

G- сила тяжести

А - сила Архимеда

R- сила сопротивления среды.

Для расчета скорости при больших числах Рейнольдса и для частиц несферической формы разработан ряд методов. Один из них основан на использовании коэффициента сопротивления ζ, по физическому смыслу являющегося аналогом критерия Эйлера:

где R - сила сопротивления, действующая на движущуюся частицу;

F - площадь проекции частицы на плоскость, перпендикулярную направлению движения.

Скорость определяется по формуле, выводимой из условия равенства сил, действующих на частицу:

Для практического использования этой формулы необходимо предварительно вычислить коэффициент сопротивления:

- для ламинарного режима, когда Re< 2

- для переходного режима (рис. 2, б) при 2

- для турбулентного (рис. 2, б), автомодельного режима, когда Re> 500, коэффициент сопротивления не зависит от критерия Рейнольдса,

Данный метод позволяет достаточно просто рассчитывать скорость движения частиц при больших значениях критерия Рейнольдса. Неудобством метода является необходимость предварительно задаваться значением скорости для расчета ζ, и поэтому на практике его используют при расчете скоростей движения в автомодельной области, когда Re> 500.

В переходном режиме скорость осаждения удобно рассчитывать, используя критерий Архимеда:

.

В зависимости от величины критерия Архимеда устанавливается в каком режиме будет происходить осаждение.

При условии Аr < 36 будет наблюдаться ламинарный режим и для дальнейшего расчета используется критериальное уравнение:

При условии 36 <Аr< 83000 режим осаждения будет переходным :

Re=0,152Ar 0,714 .

Если Аr> 83000 , то режим - автомодельный турбулентный :

Для последующего расчета скорости движения частицы в жидкости следует воспользоваться формулой

Наряду с описанными выше чисто аналитическими методами существуют методы расчета с использованием графических зависимостей.

Так, критерий Рейнольдса можно определить по графику (рис. 3) в зависимости от предварительно рассчитанного критерия Архимеда. Тем же графиком можно воспользоваться для нахождения критерия Лященко, который является производным от критериев Рейнольдса, Фруда и симплекса плотностей:

Скорость осаждения в этом случае определяют, используя следующую формулу

На графике (рис. 3) нанесены кривые, позволяющие рассчитывать скорости осаждения частиц неправильной формы. Для определения их эквивалентного (условного) размера используют зависимость, позволяющую вести расчет, исходя из объема или массы частицы расчетной величины. При этом под условным размером частицы понимают диаметр шара, объем которого равен объему частицы:

где V 4 - объем частицы расчетного размера, м 3 ;

G o - масса частицы, кг.

Рис. 3. Зависимость критериев Re и Ly от критерия Аr

Расчеты скорости движения частицы по приведенным выше методам соответствуют некоторым идеализированным условиям осаждения.

При движении частиц в системах с большой концентрацией следует учитывать поправку на стесненность:

где объемная концентрация частиц в системе.

Действительная скорость осаждения составляет:

Расчетный размер осаждаемых частиц, мкм d= 25

Вязкость дисперсной среды, Па*с 0,8937*10 -3

1 .Скорость отстаивания по формуле Стокса:

2. Критерий Рейнольдса:

Полученное значение ниже критического (Re= 2), это говорит о том, что режим ламинарный и формула Стокса применена обоснованно.

3. Поправка на стесненность движения.

Предварительно вычисляем объемную концентрацию системы:

Поправка составит:

4. Действительная скорость осаждения:

Пример 3

1. Поверхность осаждения:

м 2

2. Полный геометрический объем, принимая к 3 = 0,9:

м 3

3. Диаметр аппарата:

м.

4. Высота жидкости в цилиндрической части при = 45°:

м.

5. Полная высота цилиндрической части:

м.

6. Высота слоя осадка.

Объем днища

меньше объема осадка. Осадок будет заполнять все днище и некоторый объем в цилиндрической части. Высота осадка в коническом днище:

м 3

Пример 4

1. Геометрические размеры отстойника:

Длину принимаем l= 2 м, ширина составит:

м.

Соотношение длины и ширины

2. Толщина слоя движущейся жидкости:

м.

3. Продолжительность пребывания жидкости в отстойнике:

4. Скорость движения жидкости в слое:

5. Объем слоя движущейся жидкости составит:

Диаметр барабана ротора, м D б = 0,8

Скорость вращения, об/ мин n = 1000

Коэффициент загрузки К 3 = 0,5

1. Радиус барабана:

м.

2. Средний расчетный радиус загрузки:

3. Фактор разделения:

4. Критерий Архимеда для центробежного осаждения:

Режим осаждения переходный, так как 36

5. Критерий Рейнольдса:

6. Средняя скорость движения единичной частицы:

м/с.

7. Средняя скорость осаждения:

= 0,133*0,8831 = 0,117 м/с.

8. Продолжительность осаждения:

9. Продолжительность одного цикла.

Время вспомогательных операций принимаем равным 1 минуте.

1,001+60=61,001 с

10. Толщина слоя осадка в барабане (отношение объема осадка к объему суспензии в барабане принимается по примеру 1):

7,828*10 -3 м.

ТЕПЛОВЫЕ ПРОЦЕССЫ

ВВЕДЕНИЕ

В технологических процессах мясной и молочной промышлен­ности широко применяется тепловая обработка сырья, которая проводится в теплообменных аппаратах. Теплообменными аппара­тами называются устройства, в которых происходит теплообмен между рабочими средами независимо от его технологического назна­чения.

Теплообменными аппаратами являются конденсаторы, подогре­ватели, пастеризаторы и другие аппараты технологического и энергетического назначения.

Теплообменники можно классифицировать по основному назна­чению, по способу передачи тепла, виду теплообмена, свойствам рабочих сред и тепловому режиму.

По основному назначению различают теплообменники и реак­торы. В теплообменниках нагрев является основным процессом, а в реакторах - вспомогательным.

По способу передачи тепла теплообменные аппараты разде­ляются на две группы: аппараты смешения и поверхностные аппараты. В аппаратах смешения процесс теплообмена осуществляется за счет непосредственного контакта и смешения жидких или газооб­разных теплоносителей. В поверхностных аппаратах передача тепла от одной рабочей среды к другой осуществляется через твердую стенку из теплопроводного материала.

Поверхностные теплообменники делятся на регенеративные и рекуперативные. В регенеративных аппаратах теплоносители по­переменно соприкасаются с одной и той же поверхностью нагрева, которая, соприкасаясь вначале с "горячим" теплоносителем, на­гревается, а затем, соприкасаясь с "холодным" теплоносителем, отдает ему свое тепло. В рекуперативных аппаратах передача тепла между средами осуществляется через стенку.

В зависимости от вида рабочих сред различают теплооб­менники газовые (теплообмен между газовыми средами) и паро­газовые.

Наибольшее распространение в качестве теплоносителей по­лучили водяной пар, горячая вода и дымовые газы.

По тепловому режиму различают аппараты с установившимся и с нестационарным процессами.

В мясной и молочной промышленности наиболее широко приме­няются рекуперативные теплообменные аппараты ж аппараты смеше­ния различных типов и конструкций.

I. ГЕОМЕТРИЧЕСКИЙ РАСЧЕТ

При выполнении геометрического расчета трубчатого тепло­обменника рассчитываются те же геометрические размеры, которые можно определить по исходным данным, а также по принятым в процессе расчета геометрическим величинам. Геометрические раз­меры, расчет которых связан с применением теплотехнических величин, определяется в тепловом расчете.

Основной расчетной формулой, связывающей заданную произво­дительность по жидкости, протекающей в трубах, с принимаемыми геометрическими размерами и скоростью, является формула pacxoда

где - секундный расход,м 3 /с;

Внутренний диаметр трубки, м;

Число труб в ходу;

Скорость движения жидкости в трубах,м/с

При заданной производительности по нагреваемой жидкости расчет производится в следующем порядке.

1.1. Определяется секундный объемный расход жидкости (если задан часовой расход по массе)

где - часовой расход, кг/час;

Плотность воды, кг/м 3 .

1.2. Определяется требуемое число труб в ходу

Скорость движения жидкости по трубам принимается в пре­делах 0,3-1,5 м/с, при движении по трубам газа = 5-10 м/с. Диаметр нагревательной трубки принимается в зависимости от производительности (рекомендуется (20-30)*10 -3 м).

1.3. Определяется требуемое число труб в пучке теплообмен­ника с учетом числа ходов

Число ходов (если не задано по заданию) чаще всего при­нимают равным 1,2,4 и реже 6 и 12. Многоходовые теплообменники применяют для нагревания жидкостей на большие перепады темпе­ратур. Обычно при нагреве воды на I ход можно принять 10-30 градусов температурного перепада. Чем больше ходов в теплооб­меннике, тем он более компактен, удобен в эксплуатации и мон­таже. Если теплообменник рассчитывается как конденсатор, а не как нагреватель жидкости, в нем предусматривается только I ход.

1.4. Определяется действительное число труб в теплообменнике с учетом их рационального размещения. Для этого вычерчивается расчетная схема поперечного сечения пучка. При этом принимается чаще всего схема размещения труб по правиль­ным шестиугольникам (см. табл. нормалей).

1.5. Определяется диаметр пучка труб

где - число труб по диагонали шестиугольника

t - шаг между трубами, м; t = .(при закреплении труб в решетке путем развальцовки; = 1,3-1,5, при сварке =1,25);

Наружный диаметр трубы, м; =

м;

t 0 - зазор между крайней трубой в диагонали пучка и кожухом, принимаемый конструктивно так, чтобы

t 0 ˃ (t - d нар)

Полученный диаметр обычно увеличивают до ближайшего числа, рекомендуемого нормалями на обечайки аппаратов. Если при этом затвор окажется во много раз превосходящим размер t- , целесообразно несколько увеличить или сделать пересчет диаметра.

1.6. Определяется диаметр патрубка, подводящего жидкость

где - скорость жидкости в патрубке, принимаемая несколько большей, чем в трубах, м (рекомендуемая =1-2,5 м/с).

1.7. Уточняется скорость движения жидкости в трубах

где - действительное число труб в ходу с учетом их рационального размещения.

ТЕПЛОВОЙ РАСЧЕТ

В результате выполнения теплового расчета определяются расчетные характеристики процесса, а также те размеры аппарата, которые зависят от них. Основные расчетные зависимости, исполь­зуемые здесь - уравнение теплопередачи и формулы тепловой нагрузки.

2.1. Тепловая мощность теплообменника (тепловая нагрузка) по нагреваемой жидкости (рассчитывается, если задано G)

Вт

где С - теплоемкость жидкости при ее средней температуре, Дж/кг К;

Производительность, по нагреваемой жидкости, кг/с:

Температуры жидкости на входе и выходе, °С по конденсирующемуся пару (рассчитывается, если задано D)

где D - производительность по пару, кг/с;

i - энтальпия пара, Дж/кг;

с к - теплоемкость конденсата, Дж/ (кг*К),

t к - температура конденсата, °С (принимается на нес­колько градусов ниже температуры конденсации пара)

2.2 Определяется средняя разность температур при конденсации пара при нагреве жидкости

где t n а p - температура конденсации пара (температура насыщения), °C.

Если разности t пар - t 1 и t пар -t 2 отличаются по величине менее, чем в 2 раза, для расчета допускается вычислить среднюю арифметическую разность

2.3. Вычисляется коэффициент теплоотдачи от пара стенке:

а) для вертикальной трубы

Вт/(м 2 *К)

где - коэффициент физических констант;

Плотность, кг/м;

Коэффициент теплопроводности, Вт/(м*К);

Динамическая вязкость, Па*с;

r - удельная теплота конденсации пара, Дж/кг;

Разность температур конденсации и стенки трубы, °К;

Н - высота трубы, м.

б) для горизонтальной трубы

где - наружный диаметр трубы, м.

Коэффициент А обычно определяют по температуре пленки конденсата t пл = t пар - , принимая =10+ 30 К. Удельная теплота конденсации принимается по температуре пара по таблице.

Выбор обычно бывает затруднен и требует многократного пересчета, в связи с чем целесообразно заранее рассчитать для 4-6 значений к в пределах 10+30°К по формулам

или

При этом параметр А берется для средней температуры пленки, принимая температуру пленки на 5-15°С ниже температуры пара, и предварительно вычисляется числитель. Далее рассчитывается тепловая нагрузка по теплоотдаче от пара стенке для ряда принятых перепадов температур

или

2.4. Вычисляется коэффициент теплоотдачи от стенки трубы движущейся жидкости. Для интенсификации процесса в теплообмен­никах - нагревателях движение жидкости осуществляется в тур­булентном режиме (Rе > 10 4). При этом условии

Для расчета по этой формуле следует предварительно определить критерии Рейнольдса и Прандтля

где - кинематический коэффициент вязкости жидкости, м 2 /с;

w д - действительная скорость движения жидкости по трубам, м/с;

Внутренний диаметр труб, м;

Плотность жидкости, кг/м 3

Динамическая вязкость жидкости, Па*с:

где С - теплоемкость жидкости, Дж/кг*К;

Коэффициент теплопроводности жидкости, Вт/м*К.

Параметры жидкости С, берутся по средней температуре жидкости или . Критерий Прандтля не зависит от кинетических характеристик и может быть найден по таблице. Аналогично находится и критерий Прандтля для параметров жидкости при температуре стенки. Темпе­ратура стенки со стороны жидкости берется выше средней температуры жидкости на 10+40 К. Следует заметить, что эта температура не может быть выше температуры стенки, принятой со стороны пара при вычислении .

2.5. Определяется коэффициент теплопередачи через стенку формуле

Вт/(м 2 *К)

где - коэффициенты теплопроводности материала стенки и накипи, Вт/(м*К);

Толщины стенки трубы и накипи (загрязнения),м.

Данная формула выведена для случаев теплопередачи через плоскую стенку, однако она применяется и для цилиндрических стенок, у которых . В этом случае ошибка не превышает нескольких процентов.

При выполнении многовариантного расчета следует рассчи­тать термическое сопротивление стенки без учета теплоотдачи со стороны пара, полагал α 2 постоянным

Результаты вычислений q 1 и q ст для принятых значений t ст вно­сятся в обобщающую таблицу

t ст
q 1
q ст

По результатам расчета строится график q по ко­торому находится действительное значение t ст. д. при условии равенства .

Для определения коэффициента теплопередачи можно воспользоваться значением q= - взятым из таблицы или по гра­фику.

Для точного расчета коэффициента теплопередачи следует сначала определить величину α 1 по формуле пункта 2.3, подставив в нее значение температуры стенки, найденное по гра­фику.

После этого рассчитывается величина коэффициента тепло­передачи по формуле пункта 2.5.

2.6. Рассчитывается поверхность теплопередачи

Твердая частичка или жидкая капелька, движущаяся под действием силы тяжести сквозь вязкую жидкость, в конечном счете приобретает постоянную скорость. Она называется скоростью осаждения. Если плотность частицы ниже, чем плотность жидкости, она будет двигаться вверх со скоростью всплытия. Эти скорости обозначаются буквами vg (g – сила тяжести). Величина скорости осаждения/всплытия определяется следующими физическими параметрами:

диаметром частицы d, м

плотностью частицы ρp, кг/м3

плотностью непрерывной фазы, ρl, кг/м3

вязкостью непрерывной фазы η, кг/м,с

ускорением силы тяжести g = 9,81 м/с2.

Если известны значения всех вышеперечисленных параметров, то можно рассчитать скорость осаждения/всплытия частицы или капли при помощи следующей формулы, выведенной из закона Стокса (формула 1):

Подставляем эти значения в формулу получим:

Как видим из полученного результата, жировые шарики поднимаются очень медленно. На практике шарики жира образуют крупные скопления и их всплытие происходит гораздо быстрее.

Периодическое сепарирование под действием силы тяжести

Рисунок 1

В сосуде А, показанном на рис. 1, содержится жидкость, в которой во взвешенном состоянии находятся твердые частицы одинаковых размеров и более плотные, чем жидкость. Для того чтобы находящиеся на поверхности жидкости частицы опустились на дно, должно пройти довольно много времени.

Время осаждения может быть сокращено при условии сокращения этой дистанции. Высоту сосуда (В) уменьшили, а площадь увеличили с тем, чтобы объем остался неизменным. Дистанция осаждения (h2) уменьшилась до 1/5 от первого варианта (h), и время, требуемое для полного разделения фракций, так же сократилось до 1\5 (рисунок 2).

Рисунок 2

Непрерывное сепарирование под действием силы тяжести

Простейший сосуд, в котором может осуществляться непрерывное отделение частичек разного диаметра от жидкости, показан на рис. 3. Жидкость, содержащая частички в виде шлама, поступает в сосуд с одного его конца и движется в направлении выхода на другом конце под определенным напором. При движении частички оседают с различной скоростью в зависимости от их диаметров.



Рисунок 3

При непрерывном отделении взвеси от жидкости в сосуде с горизонтальными экранами осадительные каналы будут постоянно забиваться собирающимися в них частицами. В конце концов процесс остановится. В сосуде с наклонными экранами, показанном на рис. 4, частицы, оседающие на экранах, соскальзывают под действием силы тяжести с экранов и скапливаются на дне сосуда.

Рисунок 4

Почему частицы, оседающие на экранах, не захватываются жидкостью, текущей вверх между экранами? Объяснение дано на рис. 5, на котором

показан разрез части осадительного канала. Когда жидкость течет между экранами, ее пограничный слой, ближайший к экранам, тормозится трением, и поэтому скорость его падает до нуля. Стационарный пограничный слой оказывает тормозящее воздействие на соседний слой, и так далее в направлении к центру канала, где скорость максимальная.

Рисунок 5

Получается профиль скоростей, как показано на рисунке 5, – ламинарный поток в канале. Частицы, осевшие в стационарной пограничной зоне, таким образом, находятся под воздействием только силы тяжести.

Поверхность для осаждения, используемая при прохождении через сосуд с наклонными вставками максимального потока, должна быть предварительно рассчитана. Для полного использования пропускной способности разделительного сосуда необходимо предоставить оседающим частицам как можно большую поверхность. Расстояние, в пределах которого происходит осаждение, не оказывает непосредственного влияния на пропускную способность сосуда, но какую-то минимальную ширину канала необходимо выдерживать, чтобы не допустить забивания каналов оседающими частицами.