Самая далёкая звезда, которую нам удалось разглядеть. Самые дальние звезды млечного пути видимые невооруженным глазом Как измеряют расстояние до звезд

Более чем в шести тысячах световых годах от поверхности Земли находится быстро вращающаяся нейтронная звезда — пульсар Чёрная Вдова. У неё есть компаньон, коричневый карлик, которого она постоянно обрабатывает своим мощным излучением. Они обращаются друг вокруг друга каждые 9 часов. Наблюдая за ними в телескоп с нашей планеты, вы можете подумать, что этот смертельный танец никак вас не касается, что вы являетесь лишь сторонним свидетелем этого «преступления». Однако это не так. Оба участника этого действа притягивают вас к себе.

И вы тоже их притягиваете — на расстоянии в триллионы километров, с помощью гравитации. Гравитация — это сила притяжения между любыми двумя объектами, имеющими массу. Это значит, что любой объект нашей Вселенной притягивает любой другой объект, находящийся в ней, и одновременно притягивается к нему. Звёзды, чёрные дыры, люди, смартфоны, атомы — всё это находится в постоянном взаимодействии. Так почему же мы не чувствуем этого притяжения с миллиардов разных сторон?

Причины всего две — масса и расстояние. Уравнение, с помощью которого можно вычислить силу притяжения между двумя объектами, впервые было сформулировано Исааком Ньютоном в 1687 году. Понимание гравитации с тех пор несколько эволюционировало, но в большинстве случаев классическая теория тяготения Ньютона применима для вычисления её силы и сегодня.

Выглядит эта формула так — чтобы узнать силу притяжения между двумя объектами, надо массу одного умножить на массу другого, получившийся результат умножить на гравитационную постоянную, и всё это поделить на квадрат расстояния между объектами. Всё, как видим, довольно несложно. Можем даже немного поэкспериментировать. Если вы удвоите массу одного объекта, сила притяжения увеличится в два раза. Если вы «отодвинете» объекты друг от друга в те же два раза, сила притяжения составит одну четвёртую от того, что была раньше.

Сила притяжения между вами и Землёй тянет вас в направлении центра планеты, и вы ощущаете эту силу, как свой вес. Это значение равно 800 ньютонам, если вы стоите на уровне моря. Но если вы поедете к Мёртвому морю, оно увеличится на небольшую долю процента. Если же вы совершите подвиг и заберётесь на вершину Эвереста, значение снизится — опять-таки крайне незначительно.

Сила притяжения Земли воздействует на МКС, находящуюся на высоте около 400 километров, практически с той же силой, что на поверхности планеты. Если бы эта станция была водружена на огромную неподвижную колонну, основание которой стояло бы на Земле, то сила гравитации на ней составляла бы около 90% от той, что ощущаем мы. Астронавты находятся в невесомости по той простой причине, что МКС постоянно падает на нашу планету. К счастью, станция при этом движется с той скоростью, которая позволяет ей избегать столкновения с Землёй.

Летим дальше — на Луну. Это уже 400000 километров от родного дома. Сила притяжения Земли здесь составляет всего 0.03% от изначальной. Зато в полной мере ощущается гравитация нашего спутника, которая в шесть раз меньше привычной нам. Если вы решите полететь ещё дальше, сила притяжения Земли будет падать, но избавиться от неё окончательно не удастся никогда.

Когда вы находитесь на поверхности нашей планеты, то ощущаете притяжение великого множества объектов — как очень далёких, так и находящихся в непосредственной близости. Солнце, например, притягивает вас к себе с силой пол-ньютона. Если вы находитесь на расстоянии нескольких метров от своего смартфона, то вас тянет к нему не только желание проверить полученные сообщения, но и сила в несколько пиконьютонов. Это приблизительно равно гравитационному притяжению между вами и галактикой Андромеды, находящейся на расстоянии 2.5 миллиона световых лет и имеющей массу в триллионы раз больше, чем у Солнца.

Если же вы хотите совсем избавиться от гравитации, то можете использовать очень хитрый приём. Все массы, что находятся вокруг, постоянно тянут нас к себе, но как они поведут себя, если вы пророете очень глубокую скважину прямо к центру планеты и спуститесь туда, избежав каким-то образом всех опасностей, что могут встретиться на этом длинном пути? Если представить, что внутри идеально сферической Земли есть полость, то сила притяжения к её стенкам будет одинакова со всех сторон. И ваше тело неожиданно окажется в невесомости, в подвешенном состоянии — ровно посередине этой полости. Так что вы можете не чувствовать гравитацию Земли — но для этого надо оказаться ровно внутри неё. Это законы физики, и ничего с ними не поделаешь.

Определение расстояния в астрономии зависит обычно от того, насколько далеко находится небесное тело. Некоторые методы можно применять лишь для относительно близких объектов, например, соседних с нами планет. Другие - для более удаленных, таких как звёзды или даже галактики. Однако эти способы, как правило, менее точны.

Как определить расстояние до объекта в космосе

Способ определения расстояния до соседних планет

В Солнечной системе это относительно просто: движение планет здесь рассчитывается по законам Кеплера, и можно вычислить удаленность близлежащих планет и астероидов с помощью радиолокационных измерений. Таким путём устанавливать расстояние весьма легко.

Внутри Солнечной системы действуют законы Кеплера

Как измеряют расстояние до звезд

Для относительно близких к нам звезд можно определять так называемый параллакс. При этом необходимо наблюдать, как изменяется положение звезды в результате обращения Земли вокруг нашего светила относительно звезд, гораздо более удаленных от нас. В зависимости от точности измерения возможно довольно точное и прямое определение расстояние.

Вычисление расстояний по параллаксу звезд

Если это не подходит, можно попытаться определить тип звезды по спектру, чтобы по истинной яркости сделать вывод об удаленности. Это уже косвенный метод, так как нужно делать о звезде определенные предположения.

Измерение расстояний по спектру звезд

Если невозможно применить и этот метод, то ученые пытаются обойтись"шкалой расстояний". При этом ищут звезды, яркость которых точно известна по наблюдениям в нашей Галактике. Такие объекты называются "стандартные свечи". Ими служат, например, звезды-цефеиды, чьи яркость периодически изменяется. Согласно теории, скорость этих изменений зависит от максимальной яркости звезды.

Вычисление расстояний по цефеидам

Если такие цефеиды обнаруживают в другой галактике и можно наблюдать, как меняется яркость звезды, то определяется её максимальная яркость, а затем расстояние от нас. Другим примером стандартной свечи служит определенный вид взрыва сверхновой, у которой, как считают астрономы, всегда одинаковая максимальная яркость.

Стандартной свечой может быть взрыв сверхновой

Тем не менее, даже этот метод имеет свои ограничения. Тогда астрономы используют красное смещение в спектрах галактик.

Увеличение длины волны света, исходящего из галактики, придает ему на спектре более красный цвет, названный красным смещением

Исходя из него, может быть рассчитана скорость удаления галактики, которая непосредственно связана - согласно закону Хаббла - с расстоянием до этой галактики от Земли.

Как далеки от нас звезды?

Сколько бы мы ни вглядывались в небо темной ночью, простые наблюдения не дадут нам ответа на этот вопрос. Очевидно, что звезды очень далеки - они дальше солнца и луны (наш спутник частенько покрывает собой звезды), и, по всей вероятности, дальше всех планет. Но вот насколько далеко?

Николай Коперник был первым астрономом, который перевел рассуждения на эту тему в практическую плоскость. Как известно, Коперник построил теорию, согласно которой в центр мира помещалось Солнце, а не Земля. Это допущение помогло упростить теорию движения планет, а также объяснило некоторые странности в их поведении. Согласно Копернику Земля также вращалась вокруг Солнца - по широкой орбите с периодом в один год. Как следствие, звезды должны были видеться под разным углом в разные сезоны , скажем, весной и осенью, когда Земля находится на противоположных участках своей орбиты.

Коперник пытался найти эти смещения - параллаксы звезд , наблюдая за высотой нескольких избранных звезд на протяжении года. Но звезды не показывали никаких смещений. Очевидно, они находились слишком далеко для того, чтобы их параллаксы можно было заметить невооруженным глазом.

Даже изобретение телескопа не помогло астрономам решить этот вопрос. Параллаксы были настолько малы, что трудности при их определении многократно превышали возможности астрономов XVII-XVIII веков. Первые параллаксы были успешно измерены лишь около двухсот лет назад, после возникновения прецизионной техники наблюдений. Оказалось, что звезды находятся невероятно далеко - в несколько раз дальше, чем предполагали многие не самые оптимистические расчеты. Только вдумайтесь - даже свет, способный долететь от Земли до Луны менее чем за полторы секунды, тратит годы на путешествие от звезд к Земле! Столь большие расстояния невозможно себе даже представить!

Но и среди звезд есть такие, которые находятся к нам ближе, чем большинство, а есть такие, которые находятся дальше.

Возьмем для примера звезды - главного рисунка летнего неба. Две звезды из трех - Вега и Альтаир - относительно близки к нам. От Веги до Земли свет идет порядка 25 лет. Это эквивалентно расстоянию в 240 триллионов километров. Альтаир находится еще ближе - эта звезда входит в сотню ближайших звезд к Солнцу. Расстояние до нее измеряется 17 световыми годами.

Вега, Альтаир и Денеб - три звезды летнего треугольника, имеющие схожий блеск, но находящиеся от нас на разном расстоянии. Рисунок: Stellarium

Совсем другое дело Денеб , самая тусклая звезда в составе Летнего Треугольника, формирующая его левый верхний угол. Расстояние до Денеба столь велико, что обычным способом его не измерить - погрешность измерений велика. Для таких далеких космических объектов астрономам пришлось разработать специальные, косвенные, методы определения расстояний. Эти методы не очень точны на малых расстояниях, но хорошо работают на расстояниях в тысячи световых лет.

Оказалось, что расстояние до Денеба равняется 2750 световых лет. Эта звезда находится в 160 раз дальше от нас, чем Альтаир, и в 110 раз дальше Веги!

Сравнение Солнца (желтый кружок) и голубой звезды-сверхгиганта Денеба. Рисунок: Большая Вселенная

Денеб очень необычная звезда. Вега и Альтаир, помещенные на ее место, были бы совершенно не видны простым глазом, а Денеб наблюдается прекрасно, менее, чем вдвое уступая в блеске Альтаиру. Очевидно, яркость Денеба очень велика. Действительно, Денеб обладает совершенно фантастической светимостью - только 196000 солнц дадут такой же поток излучения, как эта голубовато-белая звезда! Посмотрите ночью на звездное небо: на нем вы не найдете звезд более высокой светимости. Ни одна из звезд, видимых невооруженным глазом (может быть, за исключением Ригеля), не светит так интенсивно, как Денеб.

Все эти ошеломительные факты о звездах стали известны исключительно благодаря тому, что мы научились определять расстояния в космосе. Но на достигнутом астрономы останавливаться не собираются: сейчас в космосе работает европейский космический телескоп Gaia , цель которого - собрать параллаксы более чем миллиарда звезд с невиданной точностью. Через несколько лет данные с Gaia помогут более точно вычислить расстояние до Денеба, и даже до еще более далеких звезд. Это позволит астрономам построить первую трехмерную карту Галактики.

Post Views: 5 985

Когда вы смотрите на небо тёмной ночью при ясной погоде, вы видите множество звёзд. Однако практически все они находятся в нашей галактике, Млечном пути. Даже самые далёкие из тех, что вы можете разглядеть без телескопа, находятся на расстоянии меньше двадцати тысяч световых лет от Земли. Может показаться, что это гигантская дистанция, но космос гораздо больше непосредственных наших окрестностей. Он действительно огромен, и именно поэтому учёным невероятно трудно изучать звёзды, находящиеся за пределами нашей галактики. Самое далёкое светило, которое удалось изолировать от окружающего её постороннего свечения, находится на расстоянии всего 55 миллионов световых лет от нас.

Научные достижения

Однако если астрономы ни в чём не ошибаются, недавно этот рекорд был побит. Согласно статье, опубликованной в марте этого года в журнале «Nature Astronomy», он был разбит в пух и прах, сметён и растоптан. Он перешёл к звезде, которая находится от нас, вдумайтесь только, в 14 миллиардах световых годах! Надо отметить, что астрономам нередко удаётся разглядеть удалённые от нашей планеты объекты. С помощью телескопов они могут видеть самые яркие сверхновые в 10 миллиардах световых годах от нас. Однако обычные звёзды невозможно рассмотреть даже на расстоянии, в сотни раз меньшем. И вот тут мы в первый раз упоминаем про «гравитационное линзирование».

Это явление происходит в тех случаях, когда огромная масса, имеющаяся у галактики или даже скопления галактик, искривляет, искажает и усиливает свет, источник которого находится за ней. Этот феномен возможен благодаря тому, что подобные объекты фактически искривляют само пространство вокруг себя. Галактики, создающие эффект гравитационного линзирования, «усиливают» яркость в среднем в 50 раз.

Далекие Звезды

Та звезда, о которой сегодня идёт речь, находится за скоплением галактик, находящимся в 6 миллиардах световых годах от нас, и её свет был усилен более чем в 2000 раз! В научных каталогах она значится как MACS J1149 Lensed Star 1. Однако учёные, обнаружившие её, дали ей и неофициальное название — Икар. Спасибо им за это большое, нам тоже так гораздо удобнее.

Икар был замечен, можно сказать, совершенно случайно, когда исследователи рассматривали снимки сверхновой, сделанные космическим телескопом «Хаббл» в 2016 и 2017 годах. Недалеко от неё они заметили небольшое яркое пятнышко. Оно со временем меняло яркость, но совсем не так, как это делают сверхновые. Цветовая гамма света, идущего от этого объекта, оставалась неизменной в течение многих месяцев. Дальнейший анализ показал, что мы имеем дело с голубым сверхгигантом.

Эти звёзды гораздо крупнее, массивнее, горячее Солнца и в сотни тысяч раз ярче его. Это такое небольшое напоминание о том, что любое явление в космосе может иметь поистине космические масштабы. Все голубые сверхгиганты обладают схожими характеристиками, поэтому, сравнив свет Икара со светом таких же объектов нашей галактики, астрономы смогли рассчитать расстояние до него. Выяснилось, что звезда имеет возраст 9 миллиардов лет, а связи с тем, что Вселенная расширяется, сейчас до этого светила вообще 14 миллиардов световых лет.

Как же Икару удалось увеличить своё изображение в 2000 раз, если обычное значение гравитационного линзирования составляет всего 50? Ответ — микролинзы. Это небольшие объекты, находящиеся внутри крупных линз. Это могут быть отдельные звёзды, обеспечивающие дополнительное приближение «картинки». Линзы внутри линз. Этот эффект длится сравнительно недолго, потому что микролинзы постоянно сходят с нужной позиции и вновь возвращаются на неё. Однако если мы внимательно следим за происходящим, перед нами открываются огромные возможности. С помощью микролинзирования учёным удалось найти даже планеты за пределами Млечного пути!

Самая далекая звезда

Икар, кстати, может быть полезен не только как обладатель рекорда, занесённый в соответствующую книгу. Изучая то, как действует на него с течением времени эффект приближения, астрономы надеются составить точную модель распределения материи в «линзирующем» скоплении галактик. Это, вероятно, включает в себя и тёмную материю, которую мы всё никак не можем найти, рассмотреть и пощупать, но которая оказывает гравитационное воздействие на прочие космические объекты. Таким образом, Икар может помочь нам значительно увеличить объём своих знаний о Вселенной. Что ж, его древнегреческий тёзка тоже был весьма положительным персонажем, хоть рекордсменом так и не стал, как ни старался. Надеемся, что и наш Икар не посрамит славного имени.

Каждая звездная система имеет четко ограниченные границы энергетического кокона, в котором она находится. Наша солнечная система устроена точно по такому же принципу. Все звездное небо, которое мы наблюдаем на границе этого кокона есть голографическая проекция точно таких же звездных систем, находящихся в нашем 3-х мерном пространстве. Изображение каждой звездной системы на нашем небосводе имеет строго индивидуальные параметры.

Они передаются постоянно и бесконечно. Источником передачи и хранения информации в космосе служит абсолютно чистый и первородный свет. В нем нет ни одного атома или фотона примеси, искажающей его чистоту. Из-за этого нам и доступны к созерцанию бесконечные мириады звезд. Все звездные системы имеют свои строго заданные координаты, прописанные в коде первородного света.

Принцип работы похож на передачу сигналов по оптоволоконному кабелю, только с помощью закодировано-световой информации. У каждой звездной системы есть свой код, с помощью которого она получает личный выделенный канал для передачи и получения информации в виде атомов и фотонов света. Это свет, в котором заключена полностью вся информация, исходящая от первоначального источника. Он обладает всеми его характеристиками и качествами, так как является его неотъемлемой частью.

Звездные системы в нашем пространстве имеют две точки входа-выхода для передачи – приема световой информации о себе и о планетах, находящихся в зоне их гравитации.

(рис. 1)
Проходя по энергетическим каналам, через шлюзовые точки (на рис. 2 белые шары) их свет и информация о них попадает в зону сопоставления и декодирования ориентационной матрицы. В результате этого уже обработанная внутри звезд, световая информация на атомарном уровне, ретранслируется дальше в наше пространство, в виде готового голографического изображения. На рисунке показал, как информация по световым каналам попадает в Солнце, после чего ретранслируется в виде голографического изображения всех звездных систем на границах энергетического кокона.


(рис. 2)
Чем меньше шлюзовых точек между звездными системами, тем они дальше разнесены от канала входа-выхода на нашем небосводе.

Коды звездных систем, пока не могут быть выражены с помощью существующих земных технологий. Из-за этого мы имеем абсолютно не правильное и искаженное представление о галактике, вселенной и космосе в целом.
Мы считаем космос бесконечной бездной, разлетающейся в разные стороны после взрыва. БРЕД, БРЕД И ЕЩЁ РАЗ БРЕД.
Космос и наше 3-х мерное пространство очень компактны. В это трудно поверить, но еще тяжелее представить. Основная причина, из-за которой мы не осознаем этого, происходит в следствии искаженного восприятие того, что мы видим на небосводе.
Бесконечность и глубину космоса, наблюдаемую нами сейчас, надо воспринимать, как изображение в кинотеатре, и не более того. Мы всегда видим только плоское изображение, ретранслируемое на границы нашей солнечной системы.(см. рис. 1) Такая картина событий вообще не объективна, и она полностью искажает реальное строение и устройство космоса в целом.

Основное предназначение всей этой системы, осуществлять визуальный прием информации, с голографически ретранслируемого изображения, считывать атомарно-световые коды, декодировать их и дальше давать возможность для физического перемещения между звездами по световым каналам.(см. рис. 3) У землян этих технологий пока нет.

Любая звездная система может находится друг от друга на расстоянии не превышающим свой собственный диаметр, который будет равен расстоянию между шлюзовыми точками + радиус соседней звездной системы. На рисунке примерно показал, как устроен космос если на него взглянуть со стороны, а не изнутри как мы привыкли это видеть.


(рис. 3)
Вот Вам пример. Диаметр нашей солнечной системы если верить нашим же ученым равен около 1921,56 а.е. Значит ближайшие к нам звездные системы будут находится на расстоянии этого радиуса, т.е. 960,78 а.е + радиус соседней звездной системы до общей шлюзовой точки. Чувствуете, как на самом деле все очень компактно и рационально устроено. Все находится намного ближе чем мы можем себе это представить.

Теперь улавливайте разницу в цифрах. Ближайшая к нам звезда согласно существующим технологиям для вычисления расстояний это Альфа Центавра. Расстояние до нее было определено как 15 000 ± 700 а. е. против 960,78 а.е + половина диаметра самой звездной системы Альфа Центавры. В пересчете на цифры ошиблись в 15,625 раз. Не многовато ли? Ведь это совершенно другие порядки у расстояний, не отражающие объективной реальности.

Как они это делают, мне вообще не понятно? Измерять дальность до объекта по голографическому изображению, расположенному на экране огромного кинотеатра. Просто жесть!!! Кроме грустной улыбки лично у меня это больше ничего не вызывает.

Вот так и складывается бредовый, недостоверный, абсолютно ошибочный взгляд на космос и на все мироздание в целом.