Общие сведения о полициклических ароматических углеводородах (ПАУ). Полиядерные ароматические углеводороды Влияние на человека

Полициклические ароматические углеводороды (ПАУ) являются большим классом очень многообразных органических соединений, молекулы которых состоят из трех или больше ароматических колец, образующих разные конфигурации.

Идентифицировано свыше 200 канцерогенных представителей этой группы. Они пагубно влияют на физиологичное состояние всех организмов, от бактерий и до организма человека в результате мутагенности, тератогенности и канцерогенности. Значительная часть ПАУ является химическими канцерогенами, индуцирующими злокачественные опухоли молочных желез, мышечной и соединительной ткани. К типичным ПАУам относятся 7,12-диметилбензантрацен и бенз(а)пирен (БП), 20-метилхолантрен, 1,2,5,6-дибензантрацен, а также соединения, которые имеют гетероциклические атомы азота, например 9-метил-3,4- бензакридин и 4-нитрохинолин-М-оксид.

ПАУ хорошо изучены на примере БП - индикаторного соединения этой группы канцерогенов. БП характеризуется максимальной относительной стабильностью при многообразных физико-химических воздействиях. Он всегда определяется там, где присутствуют и другие канцерогенные углеводороды, будучи одним из наиболее распространенных и сильных канцерогенных агентов.

К естественным абиогенным источникам, которые формируют природный фон ПАУ, относят вулканическую деятельность, процессы нефте-, угле- и сланцеобразования. Установлена возможность синтеза ПАУ растительными организмами (в частности, злаковыми), рядом бактерий (например, Clostridium putride ), фитопланктоном.

В результате деятельности человека загрязненность биосферы канцерогенными ПАУ намного увеличилась, а в промышленных районах в сотни и тысячи раз превышает их естественный фоновый уровень. Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, причем чем ниже температура, тем больше образуется ПАУ. Основные антропогенные источники загрязнения атмосферы ПАУ - промышленные выбросы и выхлопные газы автомашин.

Наличие ПАУ в выбросах турбореактивных двигателей самолетов является причиной широкого распространения этих веществ во всех слоях биосферы. Циркуляция ПАУ в атмосфере зависит от дисперсных частиц, которыми они сорбируются, степени отдаленности источника ПАУ от поверхности Земли, интенсивности солнечной радиации, наличия естественного фотооксиданта, который способствует разрушению БП и других канцерогенных ПАУ. Деструкция канцерогенных ПАУ может происходить под влиянием УФ лучей и озона.

Загрязнение водных экосистем ПАУ происходит в результате сброса промышленных сточных вод, а также выбросов двигателей судов. Циркуляция ПАУ в водной среде включает у себя процесс их распределения между разными компонентами водной экосистемы и включения в цепи питания. Эти процессы способствуют деструкции и снижению содержания ПАУ в водоеме. Большая часть ПАУ, как и большинство химических веществ, сорбируется взвешенными частицами и оседает с ними на дно, откуда поступает в водоросли и высшие водные растения (водоросли аккумулируют больше ПАУ, чем высшие водные растения). Меньшая часть ПАУ, растворенная в воде, накапливается в микропланктоне, по мере отмирания которого поступает в донные отложения.

Контаминация пищевых продуктов ПАУ возникает в процессе их технологической обработки, в частности при копчении и некоторых видах жарки мяса, рыбы, причем иногда в значительном количестве (от 1 до 100 мкг/кг). Особенную опасность представляет жарка пищевых продуктов во фритюрном жире. В пищевом сырье, полученном из экологически чистых растений, концентрация бенз(а)пирена составляет 0,03-1,0 мкг/кг. Условия термической обработки значительно увеличивают его содержание до 50 мкг/кг и более. Существенное загрязнение продуктов питания происходит при хранении в полимерных упаковочных материалах (жир молока экстрагирует до 95% бенз(а)пирена из парафино-бумажных пакетов или стаканчиков).

Таким образом, бенз(а)пирен попадает в организм человека с такими пищевыми продуктами, в которых до настоящего времени наличие канцерогенных веществ не предполагалось. Он обнаружен в хлебе, овощах, фруктах, маргарине, растительных маслах, в обжаренных зернах кофе, чае, копченостях, жаренных мясных продуктах. Причем его содержание значительно колеблется в зависимости от способа технологической и кулинарной обработки и от степени загрязнения окружающей среды.

Ежегодно с пищей взрослый человек получает 0,006 мг бенз(а)пирена. В сильно загрязненных районах эта доза возрастает в 5 и более раз. ПДК бенз(о)пирена в атмосферном воздухе - 0,1 мкг/100м 3 , в водоемах - 0,005 мг/л, в почве - 0,2 мкг/кг.

Доказано, что с продуктами табакокурения даже так называемых легких сигарет курильщик получает бенз(а)пирена - одного из опаснейших канцерогенов, в несколько раз больше, чем житель мощного промышленного города может максимально вдыхать с воздухом, а скурив одну обычную сигарету с фильтром - даже в 5-6 раз. Кстати, доза, которая вызывает минимальный эффект по эпидемиологическим показателям, в 3-4 раза меньше той, которую получает упомянутый курильщик. Не намного меньшими являются дозы, которые получают люди, находящиеся в зоне влияния продуктов курения, то есть в условиях так называемого пассивного курения.

В украинских промышленных городах особенно высокое загрязнение воздуха бенз(а)пиреном. Он имеет низкую растворимость в воде (единицы мкг/л), на порядок выше - в крови человека. Летучий при комнатных температурах, но основное его количество в загрязненном воздухе всегда связано с твердыми частицами (это касается и загрязненной воды). Дождь существенно и быстро очищает воздух от этого вещества, смывая его в почву.

Комиссия Кодекс Алиментариус (ККА) разработала руководящие принципы для ограничения введения полициклических ароматических углеводородов (ПАУ) на завершающем этапе приготовления пищевых продуктов (процессы копчения и прямой сушки).

Полиароматические углеводороды (ПАУ)

Среди множества токсичных веществ, образующихся при производстве энергии сжиганием ископаемых видов топлива, производствах химической, нефтехимической, металлургической, целлюлозно-бумажной промышленности, наиболее опасными являются вещества группы ПАУ (полиароматические углеводороды).

Группа ПАУ объединяет вещества, для которых характерно наличие в химической структуре трех и более конденсированных бензольных колец. Простейшие вещества из группы ПАУ – антрацен и фенантрен. Эти вещества не обладают канцерогенной (мутагенной) токсичностью, присущей другим ПАУ, какими являются холантрен, перилен, бенз(а)пирен, дибензпирен. На фоне их токсичности как нетоксичные квалифицируются и весьма похожие по структуре бензперилен, пирен, флуорантен.

Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, и чем ниже температура в устройстве для сжигания, тем больше образуется ПАУ. Относительно малые количества бенз(а)пирена обнаружены в асфальте. Вместе с другими продуктами сгорания ПАУ поступают в воздух. При комнатной температуре все ПАУ -– твердые кристаллические вещества. Температуры их плавления близки к 200 °С, а давление насыщенных паров очень мало. При охлаждении горячих газов, содержащих ПАУ, эти вещества конденсируются и оседают в зоне выбросов. На расстоянии нескольких километров от угольной ТЭС поверхность почвы загрязнена ПАУ. Но большая часть ПАУ уносится на дальние расстояния в виде аэрозолей. Прекрасным адсорбентом для ПАУ являются сажевые частицы. На 1 см 2 сажевой поверхности могут разместиться ~ 10 14 молекул ПАУ. Об относительном вкладе разных источников можно судить по данным о выбросах бенз(а)пирена (в т/год) в США:

Вклад всех курильщиков США в общее производство бенз(а)пирена невелик – 0,05 т/год. Но мнение о малозначимости этого количества сменится на противоположное на основе данных о локальных концентрациях бенз(а)пирена:

Содержатся ПАУ и в питьевой воде. Содержание бенз(а)пирена в питьевой воде составляет 0,3-2,0 нг/л. В атмосфере ПАУ довольно устойчивы. Их постепенная трансформация в иные продукты происходит при взаимодействии с озоном (с образованием полиядерных хинонов) и диоксидом азота (продукты – нитробенз(а)пирены, характерные высокой мутагенной активностью). ПАУ – типичные экотоксины. Сложность защиты окружающей среды от ПАУ связана с малостью концентраций этих веществ.

Токсические свойства бенз(а)пирена изучены на мышах: обнаружено подавление популяции за счет гибели при рождении и уменьшения веса новорожденных животных. Показано, что возникновение раковых заболеваний происходит и при ингаляции, и при введении бенз(а)пирена с пищей, а также при контакте с кожей. Однако эти результаты получены при дозах бенз(а)пирена в сотни и тысячи раз больших, чем получаемые людьми из окружающей среды. Из организма бенз(а)пирен частично выводится в неизмененном виде, а частично окисляется, давая производные фенольного и хинонного типа. Некоторым из этих продуктов также присуща мутагенная активность.

Лит. Пурмаль А.П. Антропогенная токсикация планеты. Часть 2.

Хроматограммы образцов, содержащих соединения этой группы

Метод

В настоящее время полициклические ароматические углеводороды (ПАУ) насчитывают более 200 представителей которые являются сильными канцерогенами и, включая их производные, относятся к самой большой группе известных канцерогенов, насчитывающей более 1 000 соединений.

К наиболее активным канцерогенам относят 3,4-бенз(а)пирен, который был идентифицирован в 1933 г. как канцерогенный компонент сажи и смолы, а также холантрен, перилен, дибенз(а)пирен и дибенз(а,п)антрацен. Ниже приведены структурные формулы наиболее канцерогенных ПАУ.

К умеренно активным канцерогенам относят бенз(п)флуорантен. Менее активные - бенз(е)пирен, бенз(а)антрацен, дибенз(а,с)антрацен, хризен, ин-дено(1,2,3-сс1)пирен и др. К малотоксичным ПАУ относят антрацен, фенан-трен, пирен, флуорантен, структурные формулы которых представлены ниже.

Некоторые из ПАУ обладают мутагенным действием, например, флуо­рантен, перилен.

Интересно, что все эти соединения имеют «углубление» в структуре мо­лекулы, так называемую «Bay» - область, характерную для многих канцеро­генных веществ.

Основным механизмом их канцерогенного действия является образова­ние соединений с молекулами ДНК. Существует представление о многоэтап­ное™ процесса канцерогенеза с участием полициклических ароматических углеводородов, в ходе которого сначала происходит инициализация процесса канцерогенеза, а затем инициализированные клетки превращаются в злока­чественные.

ПАУ широко распространены в окружающей среде. Канцерогенные ПАУ образуются в природе путем абиогенных процессов; ежегодно в био­сферу поступают тысячи тонн бенз(а)пирена природного происхождения. Еще больше - за счет техногенных источников. Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, причем, чем ниже температура, тем больше образуется ПАУ. Представители этой группы соединений обнаружены в выхлопных газах двигателей, табачном и коптиль­ном дыме.

Канцерогенная активность реальных сочетаний полициклических арома­тических углеводородов на 70...80 % обусловлена бенз(а)пиреном. Поэтому по присутствию бенз(а)пирена в пищевых продуктах и других объектах мож­но судить об уровне их загрязнения ПАУ и степени онкогенной опасности для человека.

ПАУ чрезвычайно устойчивы в любой среде, и при систематическом их образовании существует опасность их накопления в природных объектах. Накапливаемый в почве бенз(а)пирен может переходить через корни в расте­ния, то есть растения загрязняются не только осаждающейся из воздуха пы­лью, но и через почву. Концентрация его в почве разных стран изменяется от 0,5 до 1 000 000 мкг/кг. Накопление ПАУ в почвах связано с процессами трансформации органических веществ и их переносом от техногенных ис­точников.



В воде в зависимости от загрязнения найдены различные концентрации бенз(а)пирена: в грунтовой - 1... 10 мкг/м3, в речной и озерной 10.. .25 мкг/м3, в поверхностной – 25... 100 мкг/м.

ПДК бенз(а)пирена в атмосферном воздухе - 0,1 мкг/100 м3, в воде водо­емов - 0,005 мг/л, в почве - 0,2 мг/кг.

Бенз(а)перен попадает в организм человека не только из внешней среды, но и с такими пищевыми продуктами, в которых существование канцероген­ных углеводородов не предполагалось. Он обнаружен в хлебе, овощах, фрук­тах, растительных маслах, а также обжаренном кофе, копченостях и мясных продуктах, поджаренных на древесном угле. Содержание его существенно зависит от способа технологической или кулинарной обработки сырья и про­дуктов питания и степени загрязнения окружающей среды.

В пищевом сырье, полученном из экологически чистых растений, кон­центрация бенз(а)пирена 0,03... 1,0 мкг/кг. Так, образцы зерна в областях, удаленных от промышленных предприятий, содержат в среднем 0,73 мкг/кг бенз(а)пирена, а образцы зерна в промышленных районах – 22,2 мкг/кг. Яб­локи из непромышленных районов содержат 0,2...0,5 мкг/кг бенз(а)пирена, вблизи дорог с интенсивным движением – до 10 мкг/кг.

Термическая обработка значительно увеличивает его содержание: до 50 мкг/кг и более. Полимерные упаковочные материалы могут играть немало­важную роль в загрязнении пищевых продуктов ПАУ. Так, жир молока экстрагирует до 95 % бенз(а)пирена из парафинобумажных пакетов или стаканчиков.

Таблица 3.16. Содержание бенз(а)пирена (в мкг/кг) в различных пищевых продуктах

Пищевой продукт Концентрация БП мкг/кг
Свинина свежая Не обнаружено
Говядина свежая Не обнаружено
Колбаса вареная 0,26...0,50
Колбаса копченая 0...2Д0
Колбаса полукопченая 0...7,20
Телятина Не обнаружено
Телятина жареная 0,18-0,63
Крабы свежие (сухая масса) 6,00... 18,00
Камбала свежая (сухая масса) 15,00
Красная рыба 0,70... 1,70
Сельдь холодного копчения 11,20
внешняя часть 6,80
внутренняя часть 0,20... 1,00
Молоко 0,01...0,10
Сливочное масло О...ОДЗ
Подсолнечное масло 0,93...30,00
Оливковое масло рафинированное Не обнаружено
Рапсовое масло 0,90
Кокосовое масло 18,60...43,70
Мука 0,20... 1,60
Мука высшего сорта 0,09
Хлебобулочные изделия 0,13...0,47
Ржаной хлеб 0,08... 1,63
Белый хлеб, батон 0,08...0,09
Зерно 0,17...4,38
Ячмень и солод 0,35...0,70
Салат из кочанной капусты 12,00
Цветная капуста 24,00
Картофель 1,00...16,60
Кофе умеренно поджаренный 0,30...0,50
Кофе пережаренный 5,60...6,10
Сахар 0,23
Поваренная соль 0,03...0,50
Сушеные фрукты:
сливы 23,90
вишня 14,20
груша 5,70
яблоки 0,30

Образование канцерогенных углеводородов можно снизить правильно проведенной термической обработкой. При правильном обжаривании кофе в зернах образуется 0,3- -0,5 мкг/кг бенз(а)пирена, а в суррогатах кофе -0,9... 1 мкг/кг наряду с другими полициклическими соединениями. В подго­ревшей корке хлеба содержание бенз(а)пирена повышается до 0,5 мкг/кг, а в подгоревшем бисквите - до 0,75 мкг/кг. При жарении мяса содержание бенз(а)пирена также повышается, но незначительно. Сильное загрязнение продуктов полициклическими ароматическими углеводородами наблюдается при обработке их дымом. В коптильном дыме идентифицировано около 30 различных представителей ПАУ.

В плодах и овощах бенз(а)пирена содержится в среднем 0,2... 150 мкг/кг сухого вещества. Мойка удаляет вместе с пылью до 20 % полициклических ароматических углеводородов. Незначительная часть углеводородов может быть обнаружена и внутри плодов.

С пищей взрослый человек получает 0,006 мг/год бенз(а)пирена. В ин­тенсивно загрязненных районах эта доза возрастает в 5 и более раз. Содержа­ние бенз(а)пирена (в мкг/кг) в различных пищевых продуктах представлено в табл. 3.16.

Для максимального снижения содержания канцерогенов в пище основ­ные усилия должны быть направлены на создание таких технологических приемов хранения и переработки пищевого сырья, которые бы предупрежда­ли образование канцерогенов в продуктах питания или исключали загрязне­ние ими.

Этот класс органических соединений относится к числу наиболее активных канцерогенов табачного дыма. Полициклические ароматические углеводороды вызывают повреждение ДНК и нарушают ее структуру. Процессы репарации ДНК играют определяющую роль в поддержании генетического гомеостаза клеток, обусловливая их нормальный рост и размножение. Наследственно обусловленные различия в системах репарации ДНК могут определять различную индивидуальную чувствительность к канцерогенам табачного дыма, хотя у этого предположения пока отсутствует достаточная доказательная база. Однако установлено, что генетический полиморфизм ферментных систем, активирующих и детоксицирующих химические ингредиенты табачного дыма, определяет степень чувствительности организма к канцерогенным воздействиям.

Результатом индуцированных полициклическими ароматическими углеводородами повреждений ДНК являются мутации, ведущие к злокачественной трансформации клеток и развитию опухолей. В настоящее время аддукты ДНК с этими химическими соединениями обнаружены во многих соматических клетках организма человека, экспонированных к табачному дыму. На молекулярном уровне доказано, что полициклические ароматические углеводороды вызывают мутации в гене р53, которому принадлежит ключевая роль в табачном канцерогенезе в легких. Мутантный белок P53, в отличие от P53 «дикого» типа (wt P53), проявляет свойства продукта онкогена. Он не обладает способностью блокировать деление клетки с поврежденной ДНК в G 1 -фaзе клеточного цикла. В результате клетки начинают репликацию ДНК на поврежденной матрице, что приводит к нестабильности генома и повышает вероятность злокачественной трансформации.

Продолжительное курение стимулирует не только экспрессию мутантного P53, но и продукцию инсулиноподобного фактора роста-1 (IGF-1), в частности, за счет усиленного гидролиза связывающих его белков. Известно, что активированные IGF рецепторы участвуют в трансдукции антиапоптического сигнала. Клетки, в которых отсутствует wt P53, резистентны к индукции апоптоза. Усиление сигнальной трансдукции запускает процесс злокачественной трансформации клеток, способствуя как инициации, так и промоции опухолевого роста.

Однако потенциально канцерогенные ингредиенты табачного дыма поражают не все население, а лишь ту его часть, которая предрасположена к мутациям . После гидроксилирования арилгидрокарбонгидроксилазой полициклические ароматические углеводороды табачного дыма образуют активные эпоксиды, являющиеся мощными мутагенами и канцерогенами. Их канцерогенность зависит, с одной стороны, от активности эпоксидобразующих ферментов (арилгидрокарбонгидроксилаза и др.), с другой - от активности ферментных систем, разлагающих эпоксиды. Для человека характерна широкая вариабельность индукции синтеза арилгидрокарбонгидроксилазы. По скорости гидроксилирования полициклических ароматических углеводородов в организме различают три фенотипа : гомозиготы с высоким уровнем фермента, гомозиготы с низким уровнем фермента и гетерозиготы (промежуточный тип) со средним уровнем фермента. Установлено, что до 30% больных раком легкого имеют высокий уровень арилгидрокарбонгидроксилазы , хотя в общей популяции данный признак встречается очень редко. Учитывая связь данного фенотипа с канцерогенезом в легких, курильщикам с высоким уровнем индукции синтеза арилгидрокарбонгидроксилазы рекомендуется немедленно прекратить курение. Они относятся к числу лиц, имеющих чрезвычайно высокий риск развития рака легкого на фоне табакокурения.

Курящие женщины более чувствительны к индукции повреждений ДНК, чем курящие мужчины. Так, риск развития рака легкого у курящих женщин, получавших эстрогензаместительную терапию в менопаузе, в 2-2,5 раза выше, чем у женщин аналогичного возраста, не принимавших половые гормоны. Предполагают, что генотоксический эффект комбинации эстрогенов и табачного дыма обусловливает и более высокую частоту встречаемости рака мочевого пузыря у курящих женщин по сравнению с курящими мужчинами при одинаковом количестве выкуриваемых сигарет.

Современные молекулярно-генетические методы позволили установить наличие генетической предрасположенности к раку мочевого пузыря . Она связана с мутациями в локусе N-ацетилтрансферазы печени. Под действием этого фермента чужеродные для организма химические соединения ацетилируются и выводятся из организма. По скорости ацетилирования различают также три фенотипа: быстрые (гомозиготы по нормальному аллелю), медленные (гомозиготы по мутантному аллелю) и промежуточные (гетерозиготы) ацетиляторы. Рак мочевого пузыря чаще развивается у медленных ацетиляторов. Но для проявления генной мутации обязательно участие внешнесредового фактора. Таким разрешающим фактором, обусловливающим реализацию генетической предрасположенности к раку мочевого пузыря, является табакокурение. Оно значительно повышает риск развития рака мочевого пузыря у курящих лиц обоего пола. Один из компонентов табачной смолы - 4-аминобифенил - признан органспецифичным канцерогеном для мочевого пузыря. Аддукты ДНК с этим химическим соединением обнаружены в клетках мочевого пузыря курящих.

Бензопирен и другие полициклические ароматические углеводороды (бензантрацен, бензфлуорентен, бензпирилен, бензфенантрен и др.) вызывают рак полости рта, верхних дыхательных путей, легких, органов мочеполовой системы. Метаболиты бензопирена и соответствующие аддукты ДНК выявлены в клетках слизистой оболочки шейки матки курящих женщин.

Реализации действия канцерогенов и развитию злокачественных опухолей также способствуют многие компоненты табачного дыма , обладающие коканцерогенной активностью. К ним относятся сероводород, сернистый газ, сероокись углерода, оксиды азота, формальдегид, циановодород, фуран, фенольная фракция твердой фазы табачного дыма, в первую очередь пирокатехины , а также пирен, фторантен и др. Некоторые фенолы (катехол, крезол, гваякол, гидрохинон, нафтол ) оказывают канцерогенное и коканцерогенное действие. В состав табачного дыма также входят канцероген человека винилхлорид и канцерогены животных гидразин, уретан, формальдегид .

Полициклические ароматические углеводороды (ПАУ)

Полициклические ароматические углеводороды (ПАУ) не производятся промышленностью, они образуются в процессах горения. В частности, представителей этой группы соединений можно обнаружить в смолах, битумах, саже, они выделяются из гуминовых компонентов почвы, содержатся в выхлопных газах двигателей, продуктах горения отопительных установок, промышленных печей и т.д. Обычно они образуются в результате неполного сгорания органических соединений, но могут также синтезироваться некоторыми бактериями, водорослями и высшими растениями. ПАУ относительно малорастворимы в воде и прочно адсорбируются на взвешенном материале, особенно на глинистых частицах, что ведет к появлению в водной среде более высоких концентраций, чем те, которые были бы возможны только на основании представлений о растворимости.

В условиях окружающей среды обнаружено более 200 полициклических ароматических углеводород (ПАУ), большинство из которых обладают высокой устойчивостью и способны интенсивно накапливаться в различных компонентах водной среды. В водной среде их токсичность уменьшается вдвое за 5-10 лет. При микробиологическом распаде этот период составляет более 58 дней, однако за этот промежуток времени вещества не разрушаются полностью, а лишь изменяются под действием ферментов. Многие ПАУ опасны не только своей токсичностью, но и тем, что обладая трансформирующей активностью, могут способствовать возникновению канцерогенных, тератогенных или мутагенных изменений в организмах, причем канцерогенное действие их часто проявляется при дозах, которые на 1-2 порядка ниже, чем дозы общетоксического действия. Наибольшей канцерогенной активностью обладает 3,4-бензпирен (бенз(а)пирен) (табл. 4). Существенная часть растворяющихся в воде бициклических и трициклических ПАУ не является канцерогенами, однако под действием УФ излучения они переходят в соединения, остротоксичные для водных организмов.

Таблица 3. Формулы некоторых ПАУ

Способность ПАУ растворяться в воде значительно возрастает в присутствии нефти, бензола, СПАВ, ацетона и ряда других органических поллютантов, типичных для городских рек. В водной среде ПАУ претерпевают разнообразные химические превращения и подвергаются биологической деградации.

Последняя связана с участием ПАУ в метаболизме микроорганизмов (для окисления необходим кислород), а также растительных и животных организмов. Водные растения способны метаболизировать ПАУ. Значительная часть ПАУ способна сорбироваться на твердых органических частицах.

Вследствие гидрофобности, низкой растворимости в воде и высокой сорбционной способности ПАУ в значительной мере накапливаются на поверхности раздела вода-атмосфера.

Здесь они подвергаются довольно интенсивному окислению, в результате чего образуются кислородсодержащие соединения типа 5-феноксибензапирен и др. Основными окислителями при этом служат ОН-радикал и озон, приводящие к образованию перекисей и дионов, служащих, в свою очередь, источником появления разнообразных продуктов фотолиза.

В присутствии фенолов деградация их заметно снижается. Интенсивность фотохимического окисления ПАУ зависит от состава и свойств воды (мутности, температуры, содержания кислорода и т.п., т.е. параметров, резко меняющихся в условиях техногенеза). Скорость разложения ПАУ обратно пропорциональна уменьшению величины рН среды и возрастает с ростом температуры и концентрации свободного хлора. К настоящему времени установлено, что многие ПАУ скорее устойчивы в природных условиях, нежели малостабильны.

Концентрации ПАУ в поверхностных водах колеблются в широких пределах: от 0,0-0,2 нг/л в условно чистых до 1000 нг/л в сильно загрязненных водах. В свое время концентрации этих соединений в водах разных рек Германии колебались от 0,12 до 3,1 мкг/л. Обычно наиболее канцерогенные из ПАУ сосредотачиваются в поверхностном микрослое воды (поверхностной пленке).

Среди ПАУ выделяют соединения с молекулярной структурой преимущественно антропогенного и преимущественно природного происхождения.

Природными источниками ПАУ являются вулканы, углеводородные потоки от нефтегазовых и рудных месторождений и др. Содержания природных аналогов ПАУ могут быть также достаточно высоки.

В городах основное поступление ПАУ связано с промышленными предприятиями, работающих на угле, а также с выбросами автотранспорта. Например, в продуктах сгорания органического топлива идентифицировано более 200 полициклических ароматических углеводородов, а в выхлопных газах транспорта - до 150 ПАУ, их замещенных производных и гомологов.

Именно поэтому существенным источником поступления ПАУ в реки является не только канализационный сток города, но и поверхностный сток с его территории.

В сырой нефти, не подвергавшейся значительному термическому воздействию, ПАУ обнаруживается редко. Вместе с тем количество его резко возрастает в продуктах ее переработки.

В качестве приоритетных органических загрязнителей, при оценках техногенного загрязнения рек обычно рекомендуют изучать флуорантен, 10,11-бензфлуорантен, 11,12-бензфлуорантен, 3,4-бензпирен, 2,3-ортофениленпирен, 1,12-бензперилен. Ели суммарное количество их не превышает 40 нг/л, то говорят о малой степени загрязнения поверхностных вод. Однако в промышленны районах содержания только 3,4-бензпирена достигают десятков и даже сотен нг/л, тогда как условно фоновые концентрации его в речных водах обычно не превышают 1 нг/л. В поверхностных водах биосферных заповедников России, концентрации БП в основном изменялись от 0,01 до 5 нг/л (среднее 3,2 нг/л), иногда больше. В производственных сточных водах содержания БП составляют от 0,03 до 10 мг/л. В Голландии очистке подлежат грунтовые воды, если содержание в них БП превышает 1 мкг/л.

ПАУ очень негативно влияют на водную экосистему, так как являются очень токсичными соединениеми. У гидробионтов накопление ПАУ протекает по-разному. Так, одни семейства рыб не проявляют к нему склонности, другие, например, карп, могут аккумулировать за 76 часов 2700-кратные количества ПАУ.

В цепях питания, существующих в водных экосистемах, кумуляционных эффектов пока обнаружено не было. ПАУ редко встречаются в среде обитания изолированно; как правило, наблюдаются многочисленные взаимодействия со смесями ПАУ, посредством которых может усиливаться их действие с известной канцерогенной активностью.

Примерно до 60-65% ПАУ в поверхностных водах связано со взвешенными частицами (особенно органическими), которые играют большую роль в процессах переноса в толще воды и депонирования, например, БП в донные отложения.

Установлено, что флюорантен и его бензологи, обладающие довольно сильной канцерогенной активностью, широко распространены в поверхностных водах освоенных районов.

Как правило, на порядок выше, по сравнению с БП, содержание в водах пирена. Ряд ПАУ имеет биогенное происхождение, в связи с чем исследования по индикации их происхождения являются весьма важными и актуальными. По оценке В.П. Андрюкова, общий вынос БП реками в океан составляет около 35 т в год, причем 22 т имеет антропогенное происхождение.