Пространственная система сил условие равновесия. Уравнения равновесия сил, произвольно расположенных в пространстве

Совмещаем начало координат с точкой пересечения линий дей­ствия сил системы. Проецируем все силы на оси координат и сум­мируем соответствующие проекции (рис. 7.4). Получим проекции равнодействующей на оси координат:

Модуль равнодействующей системы сходящихся сил определим по формуле

Направление вектора равнодействующей определяется углами

Произвольная пространственная система сил

Приведение произвольной пространственной системы сил к центру О.

Дана пространственная система сил (рис. 7.5, а). Приведем ее к центру О.

Силы необходимо параллельно перемещать, при этом образуется система пар сил. Момент каждой из этих пар равен произведению модуля силы на расстояние до центра приведения.

В центре приведения возникает пучок сил, который может быть заменен суммарной силой (главный вектор) F ГЛ (рис. 7.5, б).

Моменты пар сил можно сложить, получив суммарный момент системы М гл (главный момент).

Таким образом, произвольная пространственная система сил приводится к главному вектору и главному моменту.

Главный вектор принято раскладывать на три составляющие, направленные вдоль осей координат (рис. 7.5, в).

Обычно суммарный момент раскладывают на составляющие: три момента относительно осей координат.

Абсолютное значение главного вектора (рис. 7.5б) равно

Абсолютное значение главного момента определяется по форму­ле.

Уравнения равновесия пространственной системы сил

При равновесии F гл = 0; М гл = 0. Получаем шесть уравнений равновесия:

Шесть уравнений равновесия пространственной системы сил со­ответствуют шести независимым возможным перемещениям тела в пространстве: трем перемещениям вдоль координатных осей и трем вращениям вокруг этих осей.

Примеры решения задач

Пример 1. На тело в форме куба с ребром а = 10 см действуют три силы (рис. 7.6). Определить моменты сил относительно осей координат, совпадающих с ребрами куба.

Решение

1. Моменты сил относительно оси Ох:

2. Моменты сил относительно оси Оу.

Пример 2. На горизонтальном валу закреплены два колеса, г 1 = 0,4 м; г 2 = 0,8 м. Остальные размеры - на рис. 7.7. К коле­су 1 приложена сила F 1 , к колесу 2 - силы F 2 = 12 кН, F 3 = 4кН.

Определить силу F 1 и реакции в шарнирах А и В в состоянии равновесия.

Напомним:

1. При равновесии выполняются шесть урав­нений равновесия.

Уравнения моментов следует составлять относи­тельно опор А и В.

2. Силы F 2 \\Ox ; F 2 \\Oy; F 3 \\Oy.

Моменты этих сил относительно соответству­ющих осей равны нулю.

3. Расчет следует завершить проверкой, использовав дополнительные уравнения равновесия.

Решение

1. Определяем силу F\, составив уравнение моментов сил отно­сительно оси Oz:

2. Определяем реакции в опоре А. На опоре действуют две со­ставляющие реакции (Y A ; X A ).

Составляем уравнение моментов сил относительно оси Ох" (в опоре В).

Поворот вокруг оси Ох" не происходит:

Знак «минус» означает, что реакция направлена в противополож­ную сторону.

Поворот вокруг оси Оу" не происходит, составляем уравнение моментов сил относительно оси Оу" (в опоре В):

3.Определяем реакции в опоре В. На опоре действуют две со­ставляющие реакции (X B , Y B ). Составляем уравнение моментов сил относительно оси Ох (опора А):

Составляем уравнение моментов относительно оси Оу (опора А):

4.Проверка. Используем уравнения проекций:

Расчёт выполнен верно.

Пример 3. Определить численное значение силы P 1 , при котором вал ВС (рис. 1.21, а) будет находиться в равновесии. При найденном значении силы Р 1 определить опорные реакции.

Действующие на зубчатые колеса силы Р и Р 1 направлены по касательным к на­чальным окружно­стям колес; силы Т и Т 1 - по радиусам колес; силы А 1 па­раллельны оси вала. Т = 0,36Р, 7Т 1 = Р 1 ; А 1 = 0,12P 1 .

Решение

Опоры вала, изображенные на рис. 1.21, а, надо рассматривать как пространственные шарнирные опоры, препятствующие линейным перемеще­ниям в направлениях осей и и v (выбранная система координат показана на рис. 1.21, б ).

Освобождаем вал от связей и заменяем их действие реакциями V В, Н В, V C , Н С (рис. 1.21, б ). Получили прост­ранственную систему сил, для которой составляем урав­нения равновесия, пользуясь выбранной системой коор­динат (рис. 1.21,6):

где А 1 *1,25D/2 - момент относительно оси и силы A 1 , приложенной к правому зубчатому колесу.

Моменты относительно оси и сил Т 1 и А 1 (приложен­ных к среднему зубчатому колесу), Р 1 (приложенной к правому зубчатому колесу) и Р равны нулю, так как силы Р, T 1 , Р 1 параллельны оси и, а сила А 1 пересекает ось и.

откуда V С = 0,37P;

откуда V B =0,37P.

следовательно, реакции V B и V С определены верно;

где А 1 * 1,25D/2 - момент относительно оси v силы А 1 , приложенной к среднему зубчатому колесу.

Моменты относительно оси v сил Т, Р 1 (приложенной к среднему зубчатому колесу), А 1 и Т 1 (приложенных к правому зубчатому колесу) равны нулю, так как силы Т, Р 1 , Т 1 параллельны оси v, сила А 1 пересекает ось v.

откуда H C = 0,81Р;

откуда H С = 1,274Р

Составим проверочное уравнение:

следовательно, реакции Н В и Н С определены верно.

В заключение отметим, что опорные реакции получи­лись со знаком плюс. Это указывает на то, что выбран­ные направления V B , Н В, V C и Н С совпадают с действи­тельными направлениями реакций связей.

Пример 4. Сила давления шатуна парового дви­гателя Р = 25 кН передается на середину шейки колен­чатого вала в точке D под углом α = 30° к горизонту при вертикальном расположении щек колена (рис. 1.22). На конец вала насажен шкив ременной передачи. Натя­жение ведущей ветви ремня в два раза больше, чем ведомой, т.е. S 1 = 2S 2 . Сила тяжести маховика G = 10 кН.

Определить натяжения ветвей ременной передачи и реакции подшипников А и В, пренебрегая массой вала.

Решение

Рассматриваем равновесие горизонтального коленчатого вала со шкивом. Прикладываем в соответ­ствии с условием задачи заданные силы Р, S 1 , S 2 иG . Освобождаем вал от опорных закреплений и заменяем их действие реакциями V A , Н А, V B и Н В. Координатные оси выбираем так, как показано на рис. 1.22. В шарнирах А и В не возникает реакций вдоль оси w, так как натя­жение ветвей ремня и все остальные силы действуют в плоскостях, перпендикулярных этой оси.

Составим уравнения равновесия:

Кроме того, по условию задачи имеем еще одно уравне­ние

Таким образом, здесь имеется шесть неизвестных уси­лий S 1, S 2 , Н А, V A , Н В иV B и шесть связывающих их уравнений.

Уравнение проекций на ось w в рассматриваемом примере обращается в тождество 0 = 0, так как все силы лежат в плоскостях, перпендикулярных оси w.

Подставляя в уравнения равновесия S 1 =2S 2 и решая их, находим:

Значение реакции Н В получилось со знаком минус. Это значит, что в действительности ее направление про­тивоположно принятому на рис. 1.22.

Контрольные вопросы и задания

1. Запишите формулы для расчета главного вектора пространственной системы сходящихся сил.

2. Запишите формулу для расчета главного вектора простран­ственной системы произвольно расположенных сил.

3. Запишите формулу для расчета главного момента простран­ственной системы сил.

4. Запишите систему уравнений равновесия пространственной системы сил.

5. Какое из уравнений равновесия нужно использовать для опре­деления реакции стержня R 1 (рис. 7.8)?

6. Определите главный момент системы сил (рис. 7.9). Точка приведения - начало координат. Координатные оси совпадают с реб­рами куба, ребро куба равно 20 см;F 1 - 20кН;F 2 - 30кН.

7. Определите реакцию Хв (рис. 7.10). Вертикальная ось со шки­вом нагружена двумя горизонтальными силами. Силы F 1 и F 2 па­раллельны осиОх. АО = 0,3 м; ОВ = 0,5 м; F 1 = 2кН; F 2 = 3,5 кН.



Рекомендация. Составить уравнение моментов относительно оси Оу" в точке А.

8. Ответьте на вопросы тестового задания.

Произвольную простран­ственную систему сил, как и плос­кую, можно привести к какому-нибудь центру О и заменить од­ной результирующей силой и парой с моментом . Рассуждая так, что для равновесия этой системы сил необходимо и достаточно, чтобы одновременно было R = 0 и M о = 0. Но векторы и могут обратиться в нуль только тогда, когда равны нулю все их проекции на оси координат, т. е. когда R x = R y = R z = 0 и M x = M y = M z = 0 или, когда дей­ствующие силы удовлетворяют условиям

ΣX i = 0; ΣM x (P i ) = 0;

ΣY i = 0; ΣM y (P i ) = 0;

ΣZ i = 0; ΣM z (P i ) = 0.

Таким образом, для равновесия пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил системы на каждую из координатных осей, а также суммы моментов всех сил системы относительно каждой из этих осей равнялись нулю.

В частных случаях системы сходящихся или параллельных сил эти уравнения будут линейно зависимы, и только три уравнения из шести будут линейно независимыми.

Например, уравнения равновесия системы сил, параллельных оси Oz , имеют вид:

ΣZ i = 0;

ΣM x (P i ) = 0;

ΣM y (P i ) = 0.

Задачи на равновесие тела под действием пространст­венной системы сил.

Принцип решения задач этого раздела остается тем же, что и для плоской системы сил. Установив, равновесие, какого тела будет рассматриваться, заменяют наложенные на тело связи их реакциями и составляют условия равновесия этого тела, рассма­тривая его как свободное. Из полученных уравнений определяются искомые величины.



Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были к ним перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно осей координат.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекоменду­ется изобразить на вспомогательном чертеже проекцию рассматри­ваемого тела (вместе с силой) на плоскость, перпендикулярную к этой оси.

В тех случаях, когда при вычислении момента возникают затруд­нения в определении проекции силы на соответствующую плоскость или плеча этой проекции, реко­мендуется разложить силу на две взаимно перпендикулярные состав­ляющие (из которых одна парал­лельна какой-нибудь координат­ной оси), а затем воспользоваться теоремой Вариньона.

Пример 5. Рама АВ (рис.45) удерживается в равновесии шарниром А и стержнем ВС . На краю рамы находится груз весом Р . Опреде­лим реакции шарнира и усилие в стержне.

Рис.45

Рассматриваем равновесие рамы вместе с грузом.

Строим расчётную схему, изобразив раму свободным телом и показав все силы, действующие на неё: реакции связей и вес груза Р . Эти силы образуют систему сил, произвольно расположенных на плоскости.

Жела­тельно составить такие уравнения, чтобы в каждом было по одной неиз­вестной силе.

В нашей задаче это точка А , где приложены неизвестные и ; точка С , где пересекаются линии действия неизвестных сил и ; точка D – точка пересечения линий действия сил и . Со­ставим уравнение проекций сил на ось у (на ось х проектировать нельзя, т.к. она перпендикулярна прямой АС ).

И, прежде чем составлять уравнения, сделаем еще одно полезное заме­чание. Если на расчётной схеме имеется сила, расположенная так, что плечо её находится непросто, то при определении момента рекоменду­ется предварительно разложить вектор этой силы на две, более удобно направленные. В данной задаче разложим силу на две: и (рис.37) такие, что модули их

Составляем уравнения:

Из второго уравнения находим

Из третьего

И из первого

Так как получилось S <0, то стержень ВС будет сжат.

Пример 6. Прямоугольная полка весом Р удерживается в гори­зонтальном положении двумя стержнями СЕ и СD , прикреплён­ными к стене в точке Е . Стержни одинаковой длины, AB=2a , EO=a . Определим усилия в стержнях и ре­акции петель А и В .

Рис.46

Рассматриваем равновесие плиты. Строим расчётную схему (рис.46). Реакции петель принято показывать двумя силами перпенди­кулярными оси петли: .

Силы образуют систему сил, произвольно расположенных в про­странстве. Можем составить 6 уравнений. Неизвестных - тоже шесть.

Какие уравнения составлять – надо подумать. Желательно такие, чтобы они были попроще и чтобы в них было поменьше неизвестных.

Составим такие уравнения:

Из уравнения (1) получим: S 1 =S 2 . Тогда из (4): .

Из (3): Y A =Y B и, по (5), . Значит Из уравнения (6), т.к. S 1 =S 2 , следует Z A =Z B . Тогда по (2) Z A =Z B =P/4.

Из треугольника , где , следует ,

Поэтому Y A =Y B =0,25P, Z A =Z B 0,25P.

Для проверки решения можно составить ещё одно уравнение и по­смотреть, удовлетворяется ли оно при найденных значениях реакций:

Задача решена правильно.

Вопросы для самопроверки

Какая конструкция называется фермой?

Назовите основные составные элементы фермы.

Какой стержень фермы называется нулевым?

Сформулируйте леммы, определяющие нулевой стержень фермы.

В чем заключается сущность способа вырезания узлов?

На основании каких соображений без вычислений можно определить стержни пространственных ферм, в которых при заданной нагрузке усилия равны нулю?

В чем заключается сущность способа Риттера?

Каково соотношение между нормальной реакцией поверхности и силой нормального давления?

Что называется силой трения?

Запишите закон Амонтона-Кулона.

Сформулируйте основной закон трения. Что такое коэффициент трения, угол трения и от чего зависит их значение?

Брус находится в равновесии, опираясь на гладкую вертикальную стену и шероховатый горизонтальный пол; центр тяжести бруса находится в его середине. Можно ли определить направление полной реакции пола?

Назовите размерность коэффициента трения скольжения.

Что такое предельная сила трения скольжения.

Что характеризует конус трения?

Назовите причину появления момента трения качения.

Какова размерность коэффициента трения качения?

Приведите примеры устройств, в которых возникает трение верчения.

В чем заключается разница между силой сцепления и силой трения?

Что называют конусом сцепления?

Каковы возможные направления реакции шероховатой поверхности?

Что представляет собой область равновесия и каковы условия равновесия сил, приложенных к бруску, опирающемуся на две шероховатые поверхности?

Что называется моментом силы относительно точки? Какова размерность этой величины?

Как вычислить модуль момента силы относительно точки?

Сформулируйте теорему о моменте равнодействующей системы сходящихся сил.

Что называется моментом силы относительно оси?

Запишите формулу, связывающую момент силы относительно точки с моментом этой же силы относительно оси, проходящей через эту точку.

Как определяется момент силы относительно оси?

Почему при определении момента силы относительно оси нужно обязательно спроецировать силу на плоскость, перпендикулярную оси?

Каким образом нужно располо­жить ось, чтобы момент данной силы относительно этой оси равнялся нулю?

Приведите формулы для вычисления моментов силы относительно координатных осей.

Как направлен вектор момента силы относительно относительно точки?

Как определяется на плоскости момент силы относительно точки?

Какой площадью можно определить числовое значение момента силы относительно данной точки?

Изменяется ли момент силы относительно данной точки при переносе силы вдоль линии ее действия?

В каком случае момент силы относительно данной точки равен нулю?

Определите геометрическое место точек пространства, относительно которых моменты данной силы:

а) геометрически равны;

б) равны по модулю.

Как определяются числовое значение и знак момента силы относительно оси?

При каких условиях момент силы относительно оси равен нулю?

При каком направлении силы, приложенной к заданной точке, ее момент относительно данной оси наибольший?

Какая зависимость существует между моментом силы относительно точки и моментом той же силы относительно оси, проходящей через эту точку?

При каких условиях модуль момента силы относительно точки равен моменту той же силы относительно оси, проходящей через эту точку?

Каковы аналитические выражения моментов силы относительно координатных осей?

Чему равны главные моменты системы сил, произвольно расположенных в пространстве, относительно точки и относительно оси, проходящей через эту точку? Какова зависимость между ними?

Чему равен главный момент системы сил, лежащих в одной плоскости, относительно любой точки этой плоскости?

Чему равен главный момент сил, составляющих пару, относительно любой точки в пространстве?

Что называется главным моментом системы сил относительно заданного полюса?

Как формулируется лемма о параллельном переносе силы?

Сформулируйте теорему о приведении произвольной системы сил к главному вектору и главному моменту.

Запишите формулы для вычисления проекций главного момента на координатные оси.

Приведите векторную запись условий равновесия произвольной системы сил.

Запишите условия равновесия произвольной системы сил в проекциях на прямоугольные координатные оси.

Сколько независимых скалярных уравнений равновесия можно записать для пространственной системы параллельных сил?

Запишите уравнения равновесия для произвольной плоской системы сил.

При каком условии три непараллельные силы, приложенные к твердому телу, уравновешиваются?

Каково условие равновесия трех параллельных сил, приложенных к твердому телу?

Каковы возможные случаи приведения произвольно расположенных и параллельных сил в пространстве?

К какому простейшему виду можно привести систему сил, если известно, что главный момент этих сил относительно различных точек пространства:

а) имеет одно и то же значение не равное нулю;

б) равен нулю;

в) имеет различные значения и перпендикулярен главному вектору;

г) имеет различные значения и неперпендикулярен главному вектору.

Каковы условия и уравнения равновесия пространственной системы сходящихся, параллельных и произвольно расположенных сил и чем они отличаются от условий и уравнений равновесия такого же вида сил на плоскости?

Какие уравнения и сколько их можно составить для уравновешенной пространственной системы сходящихся сил?

Запишите систему уравнений равновесия пространственной системы сил?

Каковы геометрические и аналитические условия приведения пространственной системы сил к равнодействующей?

Сформулируйте теорему о моменте равнодействующей пространственной системы сил относительно точки и оси.

Составьте уравнения линии действия равнодействующей.

Какую прямую в пространстве называют центральной осью системы сил?

Выведите уравнения центральной оси системы сил?

Покажите, что две скрещивающиеся силы можно привести к силовому винту.

По какой формуле вычисляют наименьший главный момент заданной системы сил?

Запишите формулы для расчета главного вектора пространственной системы сходящихся сил?

Запишите формулы для расчета главного вектора пространственной системы произвольно расположенных сил?

Запишите формулу для расчета главного момента пространственной системы сил?

Какова зависимость главного момента системы сил в пространстве от расстояния центра приведения до центральной оси этой системы сил?

Относительно каких точек пространства главные моменты заданной системы сил имеют один и тот же модуль и составляют с главным вектором один и тот же угол?

Относительно каких точек пространства главные моменты системы сил геометрически равны между собой?

Каковы инварианты системы сил?

Каким условиям удовлетворяют задаваемые силы, приложенные к твердому телу с одной и двумя закрепленными точками, находящемуся в покое?

Будет ли в равновесии плоская система сил, для которой алгебраические суммы моментов относительно трех точек, расположенных на одной прямой, равны нулю?

Пусть для плоской системы сил суммы моментов относительно двух точек равны нулю. При каких дополнительных условиях система будет в равновесии?

Сформулируйте необходимые и достаточные условия равновесия плоской системы параллельных сил.

Что такое моментная точка?

Какие уравнения (и сколько) можно составить для уравновешенной произвольной плоской системы сил?

Какие уравнения и сколько их можно составить для уравновешенной пространственной системы параллельных сил?

Какие уравнения и сколько их можно составить для уравновешенной произвольной пространственной системы сил?

Как формулируется план решения задач статики на равновесие сил?

Выше (6.5, случай 6) было установлено, что

Учитывая, что , , спроектируем формулы (6.18) на Декартовы оси координат. Имеем аналитическую форму уравнений равновесия произвольной пространственной системы сил :

(6.19)

Последние три уравнения имеют место из-за того, что проекция момента силы относительно точки на ось, которая проходит через эту точку, равна моменту силы относительно оси (формула (6.9)).

Вывод произвольной пространственной системы сил , которая приложена к твердому телу, мы должны составить шесть уравнений равновесия (6.19), потому имеем возможность с помощью этих уравнений определить шесть неизвестных величин .

Рассмотрим случай пространственной системы параллельных сил. Систему координат выберем так, чтобы ось Оz была параллельна линиям действия сил (рис. 6.11).

Таким образом, остались три уравнения:

Вывод . При решении задач на равновесие параллельной пространственной системы сил, которая приложена к твердому телу, мы должны составить три уравнения равновесия и имеем возможность с помощью этих уравнений определить три неизвестных величины .

На первой лекции по разделу «Статика» мы выяснили, что имеют место шесть разновидностей систем сил , которые могут встретиться в Вашей практике инженерных расчетов. Кроме того есть две возможности расположения пар сил: в пространстве и в плоскости. Сведем все уравнения равновесия для сил и для пар сил в одну таблицу (табл. 6.2), в которой в последней колонке отметим количество неизвестных величин, которые позволит определить система уравнений равновесия.

Таблица 6.2 – Уравнения равновесия разных систем сил

Вид системы сил Уравнения равновесия Количество определяемых неизвестных
Сходящаяся плоская
Параллельная плоская ( оси 0у ) т. А 0ху
Произвольная плоская (в плоскости 0ху) т. А – произвольная, принадлежащая плоскости 0ху

Продолжение таблицы 6.2

Продолжение таблицы 6.2

Вопросы для самоконтроля по теме 6

1. Как найти момент силы относительно оси?

2. Какая зависимость существует между моментом силы относительно точки и моментом этой же силы относительно оси, которая проходит через эту точку?

3. В каких случаях момент силы относительно оси равен нулю? А когда он наибольший?

4. В каких случаях система сил приводится к равнодействующей?

5. В каком случае пространственная система сил приводится:

– к паре сил;

– к динамическому винту?

6. Что называется инвариантом статики? Какие Вы знаете инварианты статики?

7. Запишите уравнения равновесия произвольной пространственной системы сил.

8. Сформулируйте необходимое и достаточное условие равновесия параллельной пространственной системы сил.

9. Изменится ли главный вектор системы сил при изменении центра приведения? А главный момент?


Тема 7. ФЕРМЫ. ОПРЕДЕЛЕНИЕ УСИЛИЙ

Случаю такого равновесия сил соответствуют два условия равновесия

М= Мо = 0, R* = 0.

Модули главного момента Мо и главного вектора R* рассматриваемой системы определяются по формулам

Mo= (M x 2 + M y 2 + +M z 2) 1/2 ; R*= (X 2 + Y 2 +Z 2) 1/2 .

Они раны нулю только при следующих условиях:

M x = 0, M y =0, M z = 0, X=0, Y=0, Z=0,

которым соответствуют шесть основных уравнений равновесия сил, произвольно расположенных в пространстве

=0; =0;

=0; (5-17)

=0 ; =0.

Три уравнения системы (5-17) слева называются уравнениями моментов сил относительно осей координат, а три справа- уравнениями проекций сил на оси.

При помощи этих формул уравнение моментов можно представить в виде

å (y i Z i - z i Y i)=0; å(z i Х i - x i Z i)=0 ; å(x i Y i - y i X i)=0 . (5-18)

где x i , y i , z i - координаты точек приложения силы Р; Y i , Z i , X i - проекции этой силы на оси координат, могущие иметь любые направления.

Существуют и другие системы шести уравнений равновесия сил, произвольно расположенных в пространстве.

Приведение системы сил к равнодействующей силе.

Если главный вектор системы сил R* не равен нулю, а главный момент Мо или равен нулю, или направлен перпендикулярно к главному вектору, то заданная система сил приводится к равнодействующей силе.

Возможны 2 случая.

1-й случай.

Пусть R*¹ 0; Mo = 0 . В этом случае силы приводят к равнодействующей, линия действия которой проходит через центр приведения О, а сила R* заменяет собой заданную систему сил, т.е. является ее равнодействующей.

2-й случай.

R*¹ 0; Mo¹ 0 и Мо R*. (рис.5.15).

После приведения системы сил к центру О получена сила R* , приложенная в этом центре и равная главному вектору сил, и пара сил, момент которой М равен главному моменту Мо всех сил относительно центра приведения, причем Мо R*.

Выберем силы этой пары R’ и R равными по модулю главному вектору R* , т.е. R= R’ = R*. Тогда плечо этой пары следует взять равным ОК= = М О /R* .Проведем через точку О плоскость I, перпендикулярную к моменту пары сил М . Пара сил R’ , R должна находиться в этой плоскости. Расположим эту пару так, чтобы одна из сил пары R’ была приложена в точке О и направлена противоположно силе R* . Восставим в плоскости I в точке О перпендикуляр к линии действия силы R* , и в точке К на расстоянии ОК= М О /R* от точки О приложим вторую силу пары R .

Отрезок ОК откладываем в такую сторону от точки О, чтобы, смотря навстречу вектору момента М, видеть пару стремящуюся вращать свою плоскость против движения часовой стрелки. Тогда силы R* и R’ , приложенные в точке О, уравновесятся, а сила R пары, приложенная в точке К, заменит собой заданную систему сил, т.е. будет ее равнодействующей. Прямая, совпадающая с линией действия этой силы, является линией действия равнодействующей силы. Рис. 5.15 показывает различие между равнодействующей силой R и силой R* , полученной при приведении сил к центру О.

Равнодействующая R системы сил, приложенная в точке К, имеющая определенную линию действия, эквивалентна заданной системе сил, т.е. заменяет собой эту систему.

Сила же R* в точке О заменяет заданную систему сил только в совокупности с парой сил с моментом М= Мо .

Силу R* можно приложить в любой точке тела, к которой приведены силы. От положения точки зависит только модуль и направление главного момента Мо .

Теорема Вариньона. Момент равнодействующей относительно любой точки равен геометрической сумме моментов составляющих сил относительно этой точки, а момент равнодействующей силы относительно любой оси равен алгебраической сумме моментов, составляющих сил относительно этой оси.

Векторные условия равновесия произвольной системы сил: для равновесия системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю . Иначе: для того чтобы ~0, необходимы и достаточны условия:

,
или
,
. (19)

Условия равновесия пространственной системы сил в аналитической форме

Для равновесия пространственной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы три суммы проекций всех сил на оси декартовых координат были равны нулю и три суммы моментов всех сил относительно трех осей координат также были равны нулю .

. (20)

Условия равновесия пространственной системы сходящихся сил

Для равновесия пространственной системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы проекций сил на каждую из трех прямоугольных осей координат были равны нулю :

;
;
, (21)

В случае плоской системы сходящихся сил одну из осей координат, обычно
, выбирают перпендикулярной силам, а две другие оси – соответственно в плоскости сил. Для равновесия плоской системы сходящихся сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух прямоугольных координатных осей, лежащих в плоскости сил, были равны нулю:

;
, (22)

Условия равновесия пространственной системы параллельных сил

Направим ось
параллельно силам:для равновесия пространственной системы параллельных сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма этих сил была равна нулю и суммы моментов сил относительно двух координатных осей, перпендикулярных силам, также были равны нулю :

Условия равновесия плоской системы сил

Расположим оси
и
в плоскости действия сил.

Условия равновесия плоской системы сил в первой форме: для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух прямоугольных осей координат, расположенных в плоскости действия сил, были равны нулю и сумма алгебраических моментов сил относительно любой точки, находящейся в плоскости действия сил, также была равна нулю :

(24)

Для равновесия плоской системы параллельных сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма сил была равна нулю и сумма алгебраических моментов сил относительно любой точки, находящейся в плоскости сил, также была равна нулю:

(25)

Теорема о трех моментах (вторая форма условий равновесия): для равновесия плоской системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы алгебраических моментов сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю :

Третья форма условий равновесия: для равновесия плоской системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы алгебраических моментов сил относительно двух любых точек, лежащих в плоскости действия сил, были равны нулю и алгебраическая сумма проекций этих сил на какую-либо ось плоскости, не перпендикулярную прямой, проходящей через две моментные точки, также была равна нулю , т.е.