Основы протеомики и протеомного картирования. Практическая протеомика Методы протеомики

Протеомика - наука изучающая структуру и функции белков, а также анализирующая сложную сеть белок-белковых взаимодействий внутри живой клетки.

Основные вопросы протеомики можно сформулировать следующим образом: Какова структуру и свойства каждого отдельно взятого белка? Каков набор белков в каждой конкретной клетке организма? Каким образом взаимодействуют между собой многочисленные и разнообразные белки внутри клетки? Какие белки находятся в узлах многокомпонентной сети, и каким образом осуществляется регуляция активности каждого белкового компонента этой сети? К сожалению, до сих пор нет полного ответа на эти вопросы. В то время как геном многих организмов расшифрован и описана нуклеотидная последовательность множества генов, функции значительного количества генов (а, следовательно, и белков, которые они кодируют) остаются неизвестными.

Методы и основные задачи протеомики

Важную роль в изучения структуры белков играют методы секвенирования, т.е. методы, позволяющие определять последовательность аминокислот в составе белка (первичную структуру белка). Для изучения пространственной организации аминокислот в структуре белка (вторичная и третичная структура белка) широко используются спектроскопические методы (метод кругового дихроизма и метод инфракрасной спектроскопии и др.). Методы ЯМР и рентгеноструктурный анализ дают наиболее полную и подробную информацию и третичной структуре белка и позволяют исследовать структуру белка с разрешением до 1-3 Å . Данные о третичной структуре белка дают важную информацию о функциях, выполняемых данным белком, при этом зачастую белки со схожими функциями обладают сходной пространственной структурой. Методы ультрацентрифугирования и гель-фильтрации позволяют исследовать четвертичную структуру белка. Использование комбинации описанных приемов позволяет подробно охарактеризовать структуру и свойства каждого отдельно взятого белка и таким образом получить ответ на один из основных вопросов протеомики.

Другой важной проблемой протеомики является характеристика полного состава всех белков, экспрессируемых в данной конкретной клетке. Для решения этой проблемы используется метод двумерного (2D) гель-электрофорез, сопряженный с масс-спектрометрией. 2D электрофорез позволяет разделить большинство белков, входящих в состав клетки, а метод масс-спектрометрии позволяет однозначно идентифицировать каждый из белков. Целью такого рода исследований является сравнение экспрессии белков в норме и при действии различных факторов или при различных патологических состояниях. Определение уровня экспрессии конкретных белков (белков-маркеров) может быть использовано в диагностике онкологических, нейродегенеративных и других заболеваний.

Для понимания процессов, протекающих в клетке, мало знать природу и набор белков, экспрессируемых в тех или иных условиях. Крайне важным является изучение вопроса о том, какие белки взаимодействуют друг с другом и как такого рода взаимодействия влияют на из структуру и свойства белков-партнеров. Для анализа взаимодействия белков применяются методы коиммунопреципитации (сорбции белка-антигена и его белков-партнеров на иммунном сорбенте) с последующей масс-спектрометрией для идентификации белков-партнеров, двугибридный метод, фаговый дисплей и многие другие. Определение белков-партнеров может дать важную информацию о механизме функционирования исследуемого белка, а определение белок-белковых взаимодействий позволяет описывать различные процессы, протекающие внутри клеток.

История протеомики

Начало развития протеомики можно связать с опытами Фредерика Сенгера . В 1940-х и 50-х годах он изучал структуру инсулина и впервые определил его аминокислотную последовательность и положение дисульфидных связей. Сенгер предложил метод секвенирования белков с использованием динитрофторбензола.

  • Секвенирование белков (Сенгер)
  • Кристаллизация (Самнер и др.)
  • Масс-спектрометрия
  • Современные протеомные исследования

Функциональная геномика тесно соприкасается и фактически перекрывается с новейшим направлением биологии, получившим название "протеомика " - наука о протеомах. Слово "протеом" образовано от слова "протеин" (белок) и окончания слова "геном", так что в самом названии как бы слиты воедино «белок» и «геном» (ДНК). Это подчеркивает их теснейшую взаимосвязь. Однако, между геномикой и протеомикой, между геномом и протеомом есть одно фундаментальное различие, которое вызывает к жизни совершенно новые ме- тоды исследования, новые стратегии.

Протеом - понятие динамическое, тогда как геном стабилен и постоянен, иначе было бы невозможно передать наследственные свойства от поколения к поколению, обеспечить сохранение видов и т.д. Изменчивость генома всегда происходит на фоне его высокой стабильности и ни в коей мере ее не отменяет. Протеом - набор белков данной клетки в данной фазе ее развития в данный момент времени, т.е. меньше генома по общему объему информации. В любой клетке человеческого организма никогда не функционируют все примерно 80 тыс. генов, работает лишь их часть - иногда меньшая, иногда большая. Хотя точные цифры привести пока трудно, но в обычной специализированной клетке, например, в клетке печени или легкого, одновременно присутствуют, вероятно, не более 10 тыс. белков, причем, в резко различных количествах - от нескольких молекул на клетку до нескольких процентов общего клеточного белка. Набор белков постоянно меняется в зависимости от фазы клеточного деления, тканевой специализации клетки, стадии ее дифференцировки, принадлежности к нормальным или злокачественным клеткам, состояния стресса или покоя, воздействия внеклеточных физиологически активных веществ и так до бесконечности. Поэтому белковый "портрет" клетки зависит от множества факторов и воздействий, подвержен практически непрерывным изменениям, что делает его изучение особенно трудным.

Существует «букет» протеомных технологий; каждая имеет свои достоинства и недостатки. Остановимся на двух, наиболее эффективных. Сложную смесь белков, экстрагированных из клетки, можно подвергнуть разделению на носителе (обычно это полиакриламидный гель) в двух направлениях: в одном-белки будут делиться по размерам (молекулярной массе), в другом - по электрическому заряду (изоэлектрической точке). В результате, получается двумерная, карта, содержащая многие сотни точек, каждая из которых соответствует одному или нескольким белкам.

Если исследователя интересует какая-то группа белков, можно ее выделить на «карте» и подвергнуть повторному разделению в несколько измененных условиях с более высоким разрешением. Сейчас в банках данных хранится информация о множестве разных типов клеток, белки которых были подвергнуты электрофоретическому разделению в двух направлениях. Компьютер умеет сравнивать такие двумерные «белковые карты» и вычленять то, что у этих типов клеток одинаково, а по каким белкам они различаются.

Метод «двумерных карт» непрерывно совершенствуется, и большинство индивидуальных белковых точек, которые видны на этих «картах», уже идентифицированы или находятся в процессе идентификации.

Наиболее современный метод идентификации белков состоит в том, что исследуемый белок подвергают расщеплению на фрагменты (пептиды) с помощью того или иного фермента (протеазы). Затем полученные пептиды разделяют, обычно с помощью хроматографии под высоким давлением, а потом каждый из индивидуальных пептидов помещают в масс-спектрометр и узнают его массу. Сравнение полученных результатов с имеющимися в базах данных по белкам позволяет надежно опознать белок, если его структура известна. Для неизвестного белка этот метод помогает найти "родственников", а следовательно, сформулировать предварительное представление о его возможной функции.

Изменчивость протеома связана не только с тем, что в данный момент времени работает одна часть генов, а в другой момент - иная. Набор белков сильно зависит от процессов, протекающих на пути от ДНК к матричной РНК (мРНК). Здесь большая часть первичных генных продуктов (РНК) подвергается так называемому «альтернативному сплайсингу», суть которого состоит в том, что до образования зрелой матричной РНК из нее удаляются разные части молекулы. В результате, один ген может породить множество белков, различающихся первичной структурой. Таким образом, стало очевидно, что одна из старых догм биохимии и молекулярной биологии - "Один ген - один фермент" - нуждается в модернизации. Для очень многих случаев справедлива формула: "Один ген - много белков".

В этой связи, необходимо отметить, что после синтеза, белки претерпевают множество химических изменений (модификаций), которые создают их огромное разнообразие, хотя исходно они кодированы одним геном. К числу таких модификаций относятся реакции фосфорилирования, ацетилирования, метилирования, гликозилирования и многие другие. Если учесть, что на большом белке есть множество мест, где эти модификации могут происходить, то легко себе представить, какое практически бесконечное разнообразие форм одной и той же белковой молекулы может возникнуть. Подавляющее большинство модификаций существенно сказывается на биологической активности данной молекулы белка, а также на ее способности взаимодействовать с другими белковыми молекулами. В итоге, мы приходим к заключению, что когда в клетке работает, скажем 10% всех генов – допустим, 8 тыс., - то количество разных белков может превысить эту величину в 10 раз. Исследователи и раньше догадывались, что такая ситуация возможна, однако, только теперь реально представляют ее истинные масштабы.

Крайне важным разделом протеомики, безусловно, следует считать изучение белок-белковых и белок-нуклеиновых взаимодействий. В течение жизни клетки практически каждый белок при своем функционировании взаимодействует с множеством макромолекул, а также низкомолекулярных лигандов.

Для изучения белок-белковых взаимодействий в последние годы получил широчайшее распространение метод так называемых «дрожжевых двойных гибридов». С помощью генной инженерии создается конструкция, которая состоит из участка ДНК, взаимодействующего с фактором транскрипции, и участка ДНК, кодирующего «ген-репортер», который в свою очередь кодирует белок-фермент, активность которого легко измерить. Фактор транскрипции состоит из двух доминантов и работает только в том случае, когда доминанты взаимодействуют друг с другом. Если надо узнать, взаимодействуют ли два исследуемых белка друг с другом, нужно отчленить фактор транскрипции и к каждому из доминантов присоединить по интересующему нас белку. При их взаимодействии фактор транскрипции восстановит свою активность, что позволит работать «гену-репортеру», и тогда вы обнаружите активность «репортерного белка». Если исследуемые белки не взаимодействуют, белок-фермент не образуется.

Применение двугибридной системы к белкам человека и других организмов позволило доказать, что существует огромное число белок-белковых контактов самого разного типа и, кроме того, обнаружить множество ранее неизвестных белок-белковых взаимодействий. Эта информация исключительно важна для идентификации компонентов сигнальных путей в клетке. Как правило, в передаче сигналов от поверхности клетки к ядру участвуют «белки-посредники», часто находящиеся в клетке в ничтожных концентрациях, поэтому анализ сигнальных путей для экспериментаторов сильно затруднен. Выявление белок-белковых взаимодействий резко изменило ситуацию.

При анализе белок-нуклеиновых взаимодействий широко используют методы «химической сшивки» этих компонентов (например, сотрудниками академика А.А. Богданова выявлены многие важные взаимодействия внутри рибосомных частиц, где осуществляется биосинтез белков в клетке).

Другой удобный метод - изменение электрофоретической подвижности при комплексообразовании, с помощью которого проанализировано множество ДНК-белковых и РНК-белковых контактов. Оригинальный вариант этого метода в сочетании с «химической сшивкой» разработан академиком А.Д. Мирзабековым и применен для раскрытия структуры нуклеосомы - элементарной структурной единицы, состоящей из ДНК и белков-гистонов, из которых построены все хромосомы.

ВВЕДЕНИЕ

протеомика исследование фермент

В настоящее время происходит революция в представлениях об этиологии, патогенезе и терапии болезней человека, что связано с достижениями в области молекулярной биологии и генетики, молекулярной медицины и фармакологии .

Достигнуты серьезные успехи в понимании структуры и функции ДНК, РНК, белков, репликации и функционировании генома, обратной транскрипции, модификации, репарации и рекомбинации ДНК, транскрипции и трансляции мРНК в клетках про- и эукариот. Многочисленные исследования на основе новых биоаналитических методов прояснили основные пути регуляции экспрессии генов. Подробно изучены технологии рекомбинантных ДНК. Мощное развитие в настоящее время получило изучение физико-химических основ развития наследственных и социально-значимых болезней человека (атеросклероз, онкопатологии, сахарный диабет, внутриклеточные инфекции, нейродегенеративные болезни и т.д.).

В постгеномную эру остро встает вопрос о практической реализации фундаментальных разработок в области молекулярной биологии, медицины и фармакологии. При этом отражением функционирования генома являются постгеномные события, связанные с синтезом многочисленных белков, исследованию которых сейчас уделяется особое внимание в рамках отдельного научного направления - протеомики. Развитие протеомных исследований невозможно без построения алгоритмов и методов анализа, создания базы данных, позволяющих выяснять механизм функционирования биологических текстов и разрабатывать целенаправленные фармакологические воздействия (биотрансформатика).

Связанные проблемы геномики и протеомики, фармакогеномики и биотрансформатики реализуются на основе уникальных методологических решений и технологических платформ.

В настоящее время на уровне академических центров, различных НИИ России, стран СНГ, Западной Европы, США и Канады развиваются и внедряются в клинику результаты работы научных технологических платформ для биомедицинских и фармацевтических исследований.

Цель практики - изучить основы протеомики и протеомного картирования

Задача практики - закрепление и углубление теоретических знаний, полученных в процессе обучения; освоить методы работы со специальной литературой; собрать конкретные материалы в соответствии с рекомендованными вопросами; оформить результаты, полученные в ходе прохождение практики.

ПОНЯТИЯ, ПРИНЦИПЫ И НАПРАВЛЕНИЯ ПРОТЕОМИКИ

Начало XXI века ознаменовано началом эры протеомики. Термин этот происходит от двух других хорошо известных в биохимии понятий: «PROTEins» и «genОМe» и впервые был использован в 1995 г. .

Конечно, геномика не исчезнет, она будет развиваться с той же самой, а может даже большей скоростью, но ясно, что центр постгеномных исследований будет перенесен в область инвентаризации и выяснения протеомной карты человека. На первый взгляд, задача кажется совершенно не решаемой. Если геномная карта человека одинакова, по сути дела, для всех клеток человека (это 23 хромосомы с одним и тем же набором генов - исключение составляют 14 половые клетки), то в случае протеомной карты человека говорить об общности ее совершенно бессмысленно: каждая клетка, каждая ткань, каждая биологическая жидкость должна иметь собственную протеомную карту. Несмотря на то, что в каждой клетке может быть около 100 000 функционирующих генов, многочисленные реакции модификации могут увеличить число белков в клетке до 10 - 20 миллионов .

В этой связи в настоящее время существует два определения протеомики: узкое, которое можно назвать структурной протеомикой, и более широкое, которое включает и структурную, и функциональную части протеомики. В узком смысле этого слова протеомикой является наука, занимающаяся инвентаризацией белков с помощью комбинированного использования методов: двумерного электрофореза (2D-электрофорез), масс-спектрометрического (МС) анализа молекулярной массы и последовательности разделенных электрофорезом белков биологического материала с последующим анализом полученных результатов методами биоинформатики. По сути дела, структурная протеомика - это комбинация 2D-электрофореза, масс-спектрометрии и биоинформатики. И если разрешающие возможности двумерного электрофореза известны давно, с первой работы O"Farrell в 1975 г., то возможности МС анализа очень быстро определять молекулярную массу и последовательность полипептидных цепей стали ясны только в самое последнее время. Развивались они настолько быстро, что сейчас некоторыми фирмами созданы уже полностью автоматизированные системы для определения молекулярной массы и последовательности белков, работающие на фентомолярном и атомомолярном уровнях концентрации . С помощью комбинации этих методов можно создать протеомную карту любого биологического материала, которая представляет собой фенотипическое проявление генома клетки, ткани или даже целого органа. В более широком смысле термины протеомный анализ, или протеомика могут быть использованы не только для инвентаризации белков биологического объекта, но и для контроля обратимой посттрансляционной модификации (ПТМ) белков специфическими ферментами, как-то: фосфорилирование, гликозилирование, ацилирование, френилирование, сцльфирование и т.д. .

В настоящее время уже более 300 различных типов посттрансляционной модификации охарактеризовано с помощью протеомики .

Интенсивное развитие МС-анализа способствовало появлению за последние 5 - 7 лет целой группы направлений протеомных исследований (рис. 1), большая часть которых имеет биомедицинскую направленность, однако, фундаментальная основа на сегодняшний день, по-прежнему, сохраняется за структурной и функциональной протеомикой.

Политика большинства стран Евросоюза, России и стран СНГ в той или иной степени связана с естественным стремлением населения жить в соответствии с мировыми стандартами качества. Такие термины как «экологически чистый район» или «экологически чистый продукт», а также всевозможные слова с приставкой «евро-», прочно вошедшие в обиход, к сожалению, в большинстве случаев, не имеют фактического пополнения. Вместе с тем, желанные стандарты качества жизни, установленные во многих странах, являются результатом протекания сложных процессов, затрагивающих культурные, социальные и правовые аспекты развития этих государств.

Рисунок 1 - Современные направления протеомного анализа.

В настоящее время на уровне академических центров различных НИИ России стран СНГ Западной Европы США и Канады развиваются и внедряются в клинику результаты работы научных технологических платформ для биомедицинских и фармацевтических исследований. Если геномная карта человека одинакова по сути дела для всех клеток человека это 23 хромосомы с одним и тем же набором генов – исключение составляют 14 половые клетки то в случае протеомной карты человека говорить об общности ее совершенно бессмысленно: каждая клетка каждая ткань каждая...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВВЕДЕНИЕ………………………………………………………………...3

1 ПОНЯТИЯ, ПРИНЦИПЫ И НАПРАВЛЕНИЯ ПРОТЕОМИКИ..5

2 ПРОТЕОМНОЕ КАРТИРОВАНИЕ………………………………….7

3 МЕЖДИСЦИПЛИНАРНЫЙ ПОДХОД В ИСПОЛЬЗОВАНИИ ИНОВАЦИОННЫХ ПРОТЕОМНЫХ ИССЛЕДОВАНИЙ………………12

ЗАКЛЮЧЕНИЕ………………………………………………………….15

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ……………………...17

ВВЕДЕНИЕ

В настоящее время происходит революция в представлениях об этиологии, патогенезе и терапии болезней человека, что связано с достижениями в области молекулярной биологии и генетики, молекулярной медицины и фармакологии .

Достигнуты серьезные успехи в понимании структуры и функции ДНК, РНК, белков, репликации и функционировании генома, обратной транскрипции, модификации, репарации и рекомбинации ДНК, транскрипции и трансляции мРНК в клетках про- и эукариот. Многочисленные исследования на основе новых биоаналитических методов прояснили основные пути регуляции экспрессии генов. Подробно изучены технологии рекомбинантных ДНК. Мощное развитие в настоящее время получило изучение физико-химических основ развития наследственных и социально-значимых болезней человека (атеросклероз, онкопатологии, сахарный диабет, внутриклеточные инфекции, нейродегенеративные болезни и т.д.).

В постгеномную эру остро встает вопрос о практической реализации фундаментальных разработок в области молекулярной биологии, медицины и фармакологии. При этом отражением функционирования генома являются постгеномные события, связанные с синтезом многочисленных белков, исследованию которых сейчас уделяется особое внимание в рамках отдельного научного направления – протеомики. Развитие протеомных исследований невозможно без построения алгоритмов и методов анализа, создания базы данных, позволяющих выяснять механизм функционирования биологических текстов и разрабатывать целенаправленные фармакологические воздействия (биотрансформатика).

Связанные проблемы геномики и протеомики, фармакогеномики и биотрансформатики реализуются на основе уникальных методологических решений и технологических платформ.

В настоящее время на уровне академических центров, различных НИИ России, стран СНГ, Западной Европы, США и Канады развиваются и внедряются в клинику результаты работы научных технологических платформ для биомедицинских и фармацевтических исследований.

Цель практики – изучить основы протеомики и протеомного картирования

Задача практики - закрепление и углубление теоретических знаний, полученных в процессе обучения; освоить методы работы со специальной литературой; собрать конкретные материалы в соответствии с рекомендованными вопросами; оформить результаты, полученные в ходе прохождение практики.

1 ПОНЯТИЯ, ПРИНЦИПЫ И НАПРАВЛЕНИЯ ПРОТЕОМИКИ

Начало XXI века ознаменовано началом эры протеомики. Термин этот происходит от двух других хорошо известных в биохимии понятий: «PROTEins» и «genОМe» и впервые был использован в 1995 г. .

Конечно, геномика не исчезнет, она будет развиваться с той же самой, а может даже большей скоростью, но ясно, что центр постгеномных исследований будет перенесен в область инвентеризации и выяснения протеомной карты человека. На первый взгляд, задача кажется совершенно не решаемой. Если геномная карта человека одинакова, по сути дела, для всех клеток человека (это 23 хромосомы с одним и тем же набором генов – исключение составляют 14 половые клетки), то в случае протеомной карты человека говорить об общности ее совершенно бессмысленно: каждая клетка, каждая ткань, каждая биологическая жидкость должна иметь собственную протеомную карту. Несмотря на то, что в каждой клетке может быть около 100 000 функционирующих генов, многочисленные реакции модификации могут увеличить число белков в клетке до 10 – 20 миллионов .

В этой связи в настоящее время существует два определения протеомики: узкое, которое можно назвать структурной протеомикой, и более широкое, которое включает и структурную, и функциональную части протеомики. В узком смысле этого слова протеомикой является наука, занимающаяся инвентаризацией белков с помощью комбинированного использования методов: двумерного электрофореза (2D-электрофорез), масс-спектрометрического (МС) анализа молекулярной массы и последовательности разделенных электрофорезом белков биологического материала с последующим анализом полученных результатов методами биоинформатики. По сути дела, структурная протеомика – это комбинация 2D-электрофореза, масс-спектрометрии и биоинформатики. И если разрешающие возможности двумерного электрофореза известны давно, с первой работы O’Farrell в 1975 г., то возможности МС анализа очень быстро определять молекулярную массу и последовательность полипептидных цепей стали ясны только в самое последнее время. Развивались они настолько быстро, что сейчас некоторыми фирмами созданы уже полностью автоматизированные системы для определения молекулярной массы и последовательности белков, работающие на фентомолярном и атомомолярном уровнях концентрации . С помощью комбинации этих методов можно создать протеомную карту любого биологического материала, которая представляет собой фенотипическое проявление генома клетки, ткани или даже целого органа. В более широком смысле термины протеомный анализ, или протеомика могут быть использованы не только для инвентаризации белков биологического объекта, но и для контроля обратимой посттрансляционной модификации (ПТМ) белков специфическими ферментами, как-то: фосфорилирование, гликозилирование, ацилирование, френилирование, сцльфирование и т.д. .

В настоящее время уже более 300 различных типов посттрансляционной модификации охарактеризовано с помощью протеомики .

Интенсивное развитие МС-анализа способствовало появлению за последние 5 – 7 лет целой группы направлений протеомных исследований (рис. 1), большая часть которых имеет биомедицинскую направленность, однако, фундаментальная основа на сегодняшний день, по-прежнему, сохраняется за структурной и функциональной протеомикой.

Политика большинства стран Евросоюза, России и стран СНГ в той или иной степени связана с естественным стремлением населения жить в соответствии с мировыми стандартами качества. Такие термины как «экологически чистый район» или «экологически чистый продукт», а также всевозможные слова с приставкой «евро-», прочно вошедшие в обиход, к сожалению, в большинстве случаев, не имеют фактического пополнения. Вместе с тем, желанные стандарты качества жизни, установленные во многих странах, являются результатом пр отекания сложных процессов, затрагивающих культурные, социальные и правовые аспекты развития этих государств.

Рисунок 1 - Современные направления протеомного анализа.

2 ПРОТЕОМНОЕ КАРТИРОВАНИЕ

«В мире не существует двух индивидуумов с абсолютно одинаковым метаболизмом. Индивидуальные различия активности ферментов в печени могут быть причиной различий в ответной реакции пациентов на лекарство" А Гаррод.

Важность этих слов, принадлежащих, сложно переоценить в свете последних достижений молекулярной медицины. Прочтение геномов ряда организмов, и прежде всего человека, ознаменовало начало эры постгеномных технологий. Существенное влияние они оказали на медицину, позволив систематически анализировать молекулярные механизмы зарождения и развития заболевания. Знание этих механизмов позволяет подойти к качественно новому пониманию вопросов, связанных с профилактикой, диагностикой и лечением заболеваний. Пожалуй, впервые за всю свою историю медицина получила шанс приблизиться к статусу точной науки, миновав описательную практику анализа патологических процессов, бытовавшую в течение столетий.

Протеомная карта заболевания – это понимание развития клинической картины заболевания в виде количественных и качественных нарушений на геномном, транскрипционном, трансляционном и посттрансялционном уровнях функционирования организма, т.е. на уровне нарушений в составе и взаимодействии генов в ДНК, РНК, белков, липидов, углеводов, а также на уровне образующихся в клетке и взаимодействующих между собой метаболитов.

Важно подчеркнуть, что наличие подобных нарушений часто указывает лишь на вероятность развития патологии, следовательно можно, повлияв на факторы внешней среды, снизить вероятность развития заболевания, если провести соответствующие индивидуальные профилактические мероприятия.

Большинство заболеваний, таких как псориаз, шизофрения, диабет, обусловлены комбинацией малоэффективных генных вариантов, другими словами, обусловлены не единичным нарушениями, а их набором, локализованным в различных генах. При наличии четкой взаимосвязи между дефектом одного гена и развитием патологии можно говорить о ее наследственном характере. Однако на долю наследственных приходится лишь 2-5% всех заболеваний, остальные связаны с нарушением целого ансамбля генов, а значит, зависят от индивидуального профиля многих однонуклеотидных замен и/или нарушения экспрессии группы генов.

Протеомная диагностическая карта: включает SNP, ассоциированные с заболеваниями и SNP, ответственные за фармакокинетику и фармакодинамику лекарств, она формируется на основе знаний геномики, протеомики, липидомики, метаболомики, селломики, интерактомики и с применением современных методов полимеразной цепной реакции, хромато-масс-спектрометрии, современных видов микроскопии, микрофлюидных и нанотехнологических решений для аналитических работ.

Подобно тому, как сейчас гражданский паспорт служит документом, удостоверяющим личность, протеомная диагностическая карта, кроме идентификации личности, может предназначаться и для выбора индивидуумом соответствующего образа жизни. На его основе можно определять персонифицированное лечение, воплощая в жизнь золотой стандарт современной медицины: каждому больному - свое лекарство в нужное время и в нужной дозе.

Молекулярная (протеомная) диагностика является достоверным инструментом диагностики ранних стадий онкологических заболеваний и конкретно диагностики "молчащих раков", не проявляющих себя до тех пор, пока лечить его не станет поздно. Традиционные методики верификации рака подразумевают проведение биопсии, то есть забора микропорции ткани. Однако с точки зрения диагностики подход абсолютно неприемлем, поскольку трудно предположить человека, который в рамках плановой диспансеризации соглашается на манипуляции, по сложности и болезненности приближающиеся к хирургической операции. Значит, единственным наиболее доступным для диагностики биологическим образцом была и будет протеомное исследование крови.

В глобальном масштабе протеомика занимается инвентаризацией всех белков организма. Медицинский аспект проблемы - установить корреляцию между набором белков и началом или развитием болезни. Задача сходна с геномикой, где определяется зависимость между болезнью и геномом, но на порядок сложнее. Дело в том, что белков намного больше, чем генов. Число последних оценивается в 30-40 тыс., однако каждый ген может считываться во множестве (до 200) альтернативных вариантов, а значит, белков может быть значительно больше - до 6-8 млн. в одной клетке. Причем конкретный белок может быть экспрессирован как в виде единичных молекулярных копий, так и в огромном количестве - налицо широкий диапазон концентраций белков в клетке и биологических жидкостях. Можно возразить, что похожая ситуация складывается и при анализе ДНК, но в отличие от ДНК белки невозможно наработать в ходе полимеразной цепной реакции (ПЦР). А ведь именно ПЦР - основа всех методов работы с генетическим материалом, поскольку позволяет избирательно поднять концентрацию определенной молекулы ДНК до уровня, который может быть зарегистрирован приборами. Следовательно, методической основой протеомики является подход, при котором чувствительность приборов позволяет регистрировать отдельны молекулы.

Существует международный проект "Протеом человека" (аналог проекта "Геном человека") который планирует конструирование протеомной карты всех белков человека. Первоочередные задачи проекта "Протеом человека" - составление протеомных карт плазмы крови, печени и мозга, а также проведение антигенного картирования генома. Кроме того, специальный комитет в составе проекта рассматривает новые технологические инициативы. Российский центр проекта принимает участие в разработке протеомной карты плазмы крови и печени, активно развивает новые подходы в области нанотехнологий.

Схема проведения протеомного анализа проста и основана на достижениях современной масс-спектрометрии. Образец, например плазма крови, отбирается у пациента в количестве чуть более 1 мл.. Очевидно, что в плазме крови присутствует множество различных белков. Разделение белков проводится методом двумерного электрофореза, и на двумерной электрофоре-грамме каждый белок предстает в виде отдельного пятна. Его интенсивность соответствует уровню экспрессии белка, то есть его количеству. Анализ гелей позволяет выявить индивидуальные вариации протеома, оценить статистические параметры для каждого пятна. Затем, сравнивая электрофореграмму с эталонными, удается выявить различия, связанные с заболеваниями. Различия заключаются в повышении или понижении экспрессии белка, некоторые белки появляются в плазме больных, тогда как другие могут исчезнуть. Однако на этапе анализа двумерных электрофореграмм речь на самом деле еще не идет о конкретных белках, а только об интенсивности пятен. Для того чтобы определить (идентифицировать) белок, пятно вырезают из геля, подвергают расщеплению, и массы фрагментов (пептидов) детектируют с помощью масс-спектрометрии.

Протеомный анализ сопряжен с проведением ряда трудоемких рутинных процедур, связанных с тем, что число анализируемых белков велико, а для статистической значимости результата требуется обработать большое количество образцов в соответствии со стандартным протоколом. Снятые масс-спектры передаются в программу идентификации белков. Профиль масс, полученный на масс-спектрометре, соответствующий пептидным фрагментам белка, позволяет однозначно его идентифицировать, проведя поиск соответствия с теоретическими профилями, построенными по белкам человеческого генома через специализированные компьютерные базы данных в сети Интернет в онлайн-режиме.

Постгеномная эра открывает широкие перспективы перед российскими учеными - в исследованиях по данному направлению сейчас участвует около десяти научно-исследовательских институтов РАН, РАМН, Минздрава России, Минпромнауки России и МГУ, которые располагают мощной аппаратной базой с квалифицированным техническим персоналом и значит есть потенциал для дальнейшего развития.

Для врача молекулярная карта заболевания – это ключ к точному диагнозу, прогнозу и целенаправленной терапии болезни.

Для исследователя молекулярная карта заболевания – базис для новых открытий.

Рисунок 2 – Молекулярная (протеомная) карта и терапия человека

3 МЕЖДИСЦИПЛИНАРНЫЙ ПОДХОД В ИСПОЛЬЗОВАНИИ ИНОВАЦИОННЫХ ПРОТЕОМНЫХ ИССЛЕДОВАНИЙ

Передовые методы медицинской диагностики, стоящие на стыке таких наук, как медицина, химия, физика и биология, требуют системного подхода к информационному обеспечению, которое в данном случае должно обеспечивать получение, хранение, обработку м анализ результатов исследований.

Междисциплинарная аналитическая лаборатория, имеющая уникальную базу высокотехнологичного медицинского диагностического оборудования, предполагает разработку новых подходов к еѐ информационному обеспечению.

Консультативно-диагностическая база междисциплинарной лаборатории (центра) включает 6 научных блоков:

Протеомные и фармакопротеомные исследования биологических жидкостей и тканей организма человека;

Исследование индивидуальной чувствительности к лекарственным средствам;

Исследование биоэквивалентности лекарственных средств;

Разработка и клинические испытания лекарственных средств (I фаза);

Информационные стандарты лекарственных средств;

Фармакоэпидемиологические исследования и регистрация ПЭ при применении лекарственных средств.

Консультативно-диагностическая база объединяет 6 подразделений лабораторных методов, оснащенных передовым, высокотехнологическим оборудованием:

Подразделение ВЭЖХ/МС;

Подразделение новых электрофоретических методов исследования; Подразделение ПЦР;

Подразделение спектрофотометрических методов исследования; Подразделение MALDI-TOF-MC;

Подразделение иммунохимических методов исследования.

Результаты работы всех вышеперечисленных научных блоков и подразделений лаборатории внедряются на уровне консультативного подразделения по клинической фармакологии .

Информационную платформу для биомедицинской лаборатории можно представить в виде схемы, объединяющей три блока: эпидемиология и фармакоэпидемиология, молекулярные исследования и базы данных.

Получая большое количество клинической информации и данные эпидемиологических исследований в медицине с помощью высокотехнологичных методов исследования, анализа и обработки их результатов, идентификации полученной информации, формируются базы данных, которые затем посредством информационных технологий применяются во всех областях медицинской деятельности и способствуют решению следующих задач:

Развитию генодиагностики и генотерапии;

Формированию медико-генетических методов исследования на этапе первичной медицинской помощи;

Развитию фармакогеномных принципов диагностики и терапии при назначении лекарств;

Развитию исследований фармацевтической эквивалентности и биоэквивалентности лекарственных средств; созданию банка данных генетических полиморфизмов и протеомных паттернов заболеваний у здоровых лиц и пациентов.

ЗАКЛЮЧЕНИЕ

В настоящее время прогресс в биомедицине обусловлен появлением новых электрофоретических методов исследования, методов ПЦР, ВЭЖХ и МС. Их эффективное применение связано с усовершенствованием способов первичной подготовки биологических образцов для исследования и развитием клеточных технологий. Соединение возможностей этих методов способствует созданию единых технологических платформ для реализации программ фундаментальных и прикладных исследований в области биомедицины, фармакологии и фармации.

Развитие новых технологических платформ для биомедицинских и фармацевтических исследований происходит на основе нанотехнологических решений.

Открытия в области расшифровки генома человека, геномов патогенных микроорганизмов, а также интересные результаты протеомных исследований биологических жидкостей и тканей организма человека способствуют появлению новых терапевтических агентов для лечения многих социально значимых заболеваний. Мощный потенциал открытий в области геномики, протеомики, метаболомики для разработки генотерапии и новых лекарственных препаратов можно реализовать в полной мере на основе новых технологических платформ и с учетом современных стандартов их проведения.

Важной задачей является создание полноценного биоинформационного ресурса, который станет мощной базой для планирования новых экспериментальных разработок, для интерпретации новых результатов геномных, протеомных исследований, а также для выполнения работ по предиктивной фармакологии. Будущее биоинформатики связано с развитием экспериментальной геномики для пациентов с разработкой типичного сценария развития организма человека, начиная с постнатального периода, что должно произвести революцию в медицине и здравоохранении.

Передовые методы биомедицинской диагностики, стоящие на стыке таких наук, как медицина, физика и биология, требуют системного подхода к информационному обеспечению, которое в данном случае должно способствовать получению, хранению, обработке, анализу и обмену результатами исследований в рамках выполнения многоцентровых программ.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Арчаков А.И. Биоинформатика, геномика и протеомика – науки о жизни XXI столетия//Вопр. мед. химии. 2000. № 1. С. 13 – 18.

2. Арчаков А.И. Что за геномика? – Протеомика//Вопр. мед. химии. 2000. № 1. С. 19 – 24.

3. Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. – СПб.: Спец. лит, 1997. – 287 с.

4. Горшкова Ю.В., Трегубов А.В. Информационные технологии в лаборатории прикладной фармакокинетики//Проблемы стандапртизации в здавоохранении. 2005. № 11. С. 129 – 132.

5. Ивахно С., Карнелюк А. Количественная протеомика и еѐ применение в системной биологии//Биохимия. 2006. Т. 71. № 10. С. 1312 – 1327.

6. Сарвилина И.В., Каркищенко В.Н., Горшкова Ю.В. Междисциплинарные исследования в медицине. – М.: Техносфера, 2007. – С. 15 – 56.

7. Blackstone N.B., Green D.R. The evolution of mechanism of cell suicid//Bioessays. 1999. Vol. 21. № 1. pp. 84 –88.

8. Fiser A. Protein Structure modeling in proteomics era// Expert Rev. Proteomics. 204. Vol. 1. № 1. pp. 97 – 110.

9. Gerber S.A., Rush J., Stemman O. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS//PNAS. USA. 2003. Vol. 100. № 12. pp. 6940 – 6945.

10. Lander E.S. Array of Hope//Nature Genet. 1999. Vol. 21. pp. 3 – 4.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

11839. Всестороннее изучение и характеристика особенностей «дорожного картирования» 134.15 KB
Объект исследования: дорожные карты а предмет – создание и использование дорожных карт. Дорожные карты могут помочь сосредоточиться на долгосрочном планировании улучшить взаимо связи независимость проектов являясь базой для корпоративного научнотехнического планирования идентификации потребностей сильных и слабых сторон корпорации. Для каждой продуктовой линии дорожные карты согласуют рыночную стратегию с технологическими планами и планами по продуктам. ДДорожные карты помогают сконцентрировать внимание на долгосрочном планировании...
11932. 17.7 KB
Созданный метод электромагнитного картирования в высоких широтах с использованием разработанного мощного контролируемого источника экстремально низкочастотного диапазона включающий в себя методики решения прямых задач рекомендации к проведению экспериментов и современные методы интерпретации результатов таких экспериментов представляется особенно актуальным для исследования перспективных но в то же время труднодоступных для изучения высокоширотных регионов. Решение проблемы электромагнитного картирования в высоких широтах с использованием...
13544. Биомеханические основы ИВС 3.12 MB
При температуре 4град. Удельный вес дистиллированной воды при t 4град. Повышение или понижение t воды приводит к изменению удельного веса. Наличие в воде солей или других примесей также приводит к увеличению удельного веса.
10320. Основы менеджмента 86.1 KB
Организация – это открытая система взаимодействующих и управляемых частей подразделений людей и т. Управление – это процесс распределения и движения пяти видов ресурсов в организации с заранее заданной целью по заранее разработанному стратегическому плану с непрерывным контролем результатов работ. Адаптивное управление – это приспосабливающееся к новой обстановке окружающей среде управление с изменением планов и моделей в зависимости от складывающейся ситуации. Существуют так называемые уровни управления – это уровни в дереве иерархии.
17816. Основы Linux 45.52 KB
Войти в свой домашний каталог. Для этого нужно сделать команду cd Вы находитесь в своем рабочем каталоге. Здесь хранятся ваши пользовательские файлы и настройки программ, которые вы используете. Создать следующую структуру каталогов и файлов,в домашнем каталоге создать каталог inform...
6066. Основы термодинамики 40.26 KB
При расширении газа элементарная работа которую он совершает при перемещении поршня на бесконечно малое расстояние равна где сила действующая со стороны газа на поршень. Если давление газа а площадь поршня то и тогда. Произведение равно очевидно увеличению объема газа...
3779. Основы геоинформатики 31.41 KB
В учебно-методическом пособии изложены программа дисциплины, варианты контрольных заданий, темы практических занятий, вопросы к зачету, рекомендуемая литература, приведены примеры выполнения и требования к оформлению контрольных работ.
4449. Логические основы ЭВМ 40.08 KB
Основы математической логики; логические законы. Основные логические элементы; логические схемы. Полусумматор, сумматор. Триггер.
11759. Основы правовой статистики 1.34 MB
При этом правовые явления и процессы рассматриваются в динамике развитии; взаимосвязи что позволяет выявить причинно-следственные связи развития; сравнении и сопоставлении что позволяет установить специфику и типические черты изучаемого явления. В установлении и количественное выражение закономерностей и взаимозависимости массовых явлений статистическая наука опирается на закон больших чисел особенность которого состоит в том что правильности и закономерности массовых явлений могут отчетливо быть обнаружены только при их массовом...
14754. ОСНОВЫ ФИНАНСОВОГО ПРАВА 12.06 KB
Финансовая деятельность государства и финансовая система Республики Беларусь. Финансовый контроль в Республике Беларусь. Бюджетное право Республики Беларусь. Бюджетное устройство и бюджетная система Республики Беларусь.

НАУЧНЫЕ СООБЩЕНИЯ

С.В. Сучков12, Д.А. Гнатенко1, Д.С. Костюшев1, С.А. Крынский1, М.А. Пальцев3

1 Первый Московский государственный медицинский университет им. И.М. Сеченова, Российская Федерация 2 Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Российская Федерация

3 РНЦ «Курчатовский институт», Москва, Российская Федерация

Протеомика как фундаментальный инструмент доклинического скрининга, верификации анализов и оценки применяемой

Протеомика - наука, изучающая белки живых организмов, их функции и взаимодействие, на сегодняшний день является незаменимым компонентом в создании протоколов доклинической диагностики. В сочетании с достижениями геномики, биоинформатики, использование технологий протеомики - мощный инструмент ранней диагностики заболеваний, а также динамической оценки протекания патологических процессов (в частности, на фоне проводимой фармакотерапии). В статье рассмотрены общие и частные аспекты протеомики, основанные на базе моделей кардио- и онкозаболеваний.

Ключевые слова: протеомика, диагностика, предикция, трансляционная медицина.

Введение

Известно, что абсолютное большинство патологических изменений в функционировании клеток, тканей и органов сопровождается отклонением от физиологического белкового профиля нормального здорового организма. В современных условиях анализ и прогнозирование подобных изменений выходят на первый план при создании протоколов доклинического скрининга (т.е. определение скрытых и латентных белковых «предвестников» заболевания, а также оценка эффективности применяемых методов терапии). Поиск, определение, разделение, количественное и качественное определение белковых молекул, играющих роль в обеспечении чувствительности либо непосредственно в формировании заболевания, являются основными задачами протеомики.

Протеомика (англ. proteomics) - наука, изучающая белковый состав биологических объектов, а также структурно-функциональные свойства белковых молекул. Ее задачей является идентификация и количественное определение совокупных индивидуальных белков, которые содержатся в биологических образцах (сыворотка крови, спинномозговая жидкость, моча, биоптаты) на разных стадиях развития заболевания, а также на фоне проводимой терапии. Совокупность всех белков организма, т.е., по сути, его белковый профиль, носит название «про-теом».

Современный технологический арсенал протеомики

Фракционирование и разделение белков, содержащихся в конкретном биологическом образце, осуществляют

S.V. Suchkov1,2, D.S. Kostushev1, S.A. Krynskiy1, D.A. Gnatenko1, M.A. Paltsev3

1 I.M. Sechenov First Moscow State Medical University, Russian Federation 2 A.I. Evdokimov Moscow State Medical Dental University, Russian Federation 3 Kurchatov’s Scientific Institute, Moscow, Russian Federation

Proteomics as a fundamental tool for subclinical screening, tests verification and assessment of applied therapy

Proteomics is a science which studies proteins of the body, interactions of proteins and their biological functions. Today, it is an essential partner in establishingpreclinical diagnosis protocols. In conjunction with other sciences such as genomics and bioinformatics it will be possible to diagnose diseases on the earliest stages before its clinical onset or to gain the dynamics of pathological processes in the body and response to drug therapy. This article discusses general aspects of proteomics as well as special ones on the basis of models of cardiac diseases and cancer.

Key words: proteomics, diagnostics, prediction, translation medicine.

ВЕСТНИК РАМН /2013/ № 1

посредством электрофореза в полиакриламидном геле. Для идентификации же выделенных белков применяют широкую панель методов, среди которых следует выделить:

Микросеквенирование белков;

Жидкостную хроматографию высокого давления (HPLC) и высокого разрешения;

Методы иммунохимического тестирования с использованием моноклональных антител к индивидуальным антигенным детерминантам;

Масс-спектрометрию.

В последние годы процедуру детекции белковых молекул существенно оптимизировали, разработав для этой цели широкую панель микробиочипов с различными типами детекции, например SELDI (surface-enhanced laser desorption/ionization) и/или MALDI (matrix-assisted laser desorption/ionization). Подходы такого рода позволили анализировать одновременно до 10 000 индивидуальных белков в одном образце, фиксируя при этом мельчайшие сдвиги в их концентрациях под влиянием различных факторов. В итоге, если белки различаются хотя бы по одному из присущих им параметров (суммарному заряду молекулы или молекулярной массе), вышеуказанный подход позволяет добиваться их разделения с последующей идентификацией и характеристикой.

Одним из наиболее перспективных методов идентификации белков является масс-спектрометрия, основанная на формировании в вакуумном пространстве ионизированных частиц анализируемого вещества с последующим анализом отношения массы ионов к их заряду. Существуют различные модификации масс-спектрометрии, которые подразделяются в зависимости от используемых методов ионизации и детекции частиц. Время-пролетный масс-спектрометр регистрирует отдельные ионы с указанием значения отношения массы к заряду (m/z) иона, числа ионов и времени пролета ионов от источника до детектора ионов .

Меньшим разрешением обладают хроматографические методы, позволяющие осуществить разделение белков по физическим свойствам молекул: заряду (ионообменная хроматография), параметрам гидрофоб-ности (гидрофобная хроматография), размеру (гель-фильтрация), способности к связыванию с различными лигандами, например антителами (аффинная хроматография). Речь в этих случаях идет о вариантах жидкостной хроматографии, т.к. в газовой фазе молекулы белка не существуют. В протеомном анализе часто используют комбинацию масс-спектрометрии и жидкостной хроматографии (хромато-масс-спектрометрия): то есть, по сути, создание и внедрение в практику масс-спектрометрии привело к скачку в развитии протеомики.

Наконец, к методам протеомики относится иммунохимический анализ с использованием моноклональных антител к индивидуальным антигенным детерминантам, к линейным и конформационно-зависимым, включая ряд криптических эпитопов.

Важную роль при работе со срезами тканей играют иммуногистохимические методы исследования, основанные на специфических взаимодействиях антиген-антитело. Иммуногистохимические методы обладают высокой чувствительностью и специфичностью, позволяют определить практически любой интересующий антиген (рамки применения метода ограничиваются только име-ющеейся в распоряжении библиотекой антител).

Выявление связавшихся антител осуществляют с помощью ферментных или флуоресцентных меток. В клинической практике более распространены ферментные метки, поскольку метод иммунофлуоресценции, хотя

и является более чувствительным и специфичным, но требует дорогостоящего оборудования. К тому же, флуоресцентные красители имеют короткое время хранения. Некоторые методики включают применение полимерных носителей для антител, что увеличивает чувствительность реакции .

Конечным этапом столь трудоемкого и многоступенчатого исследования является идентификация белка при помощи баз данных (биоинформатика).

Биоинформатика с позиции прикладной науки позволяет не только хранить, анализировать и обрабатывать гигантские объемы данных, необходимые для проведения научных и диагностических процедур, но также способна обеспечивать получение информации о функциональных свойствах определенных белковых молекул на основании некоторых данных по структуре генома. Таким образом, не имея практически никакой информации по взаимодействию групп молекул между собой, их функциям и свойствам, в некоторых случаях можно достоверно, с высокой степенью вероятности, определить характеристики изучаемого объекта.

Протеомика как фундамент для научных исследований с последующим внедрением результатов в клиническую практику в рамках принципов и задач трансляционной медицины

В исследованиях нередко необходим анализ большого числа однотипных образцов. Между тем каждое исследование требует материальных и временных затрат, минимизировать которые позволяет метод тканевых матриц, подразумевающий создание библиотек образцов тканей с последующей возможностью одновременного (на одном стекле) исследования множества срезов . Типовая последовательность операций при исследованиях такого рода, такова:

Отбор образца (клетки, ткань, биологическая жидкость);

Приготовление образца (лизис клеток, экстракция белков);

Двумерный электрофорез в полиакриламидном геле;

Проявление белковых пятен на геле;

Анализ электрофореграммы (число пятен, их расположение);

Выделение участков геля, содержащих индивидуальные белковые пятна;

Расщепление индивидуальных белков (трипсиниза-ция) непосредственно в геле;

Масс-спектрометрический анализ (определение аминокислотных последовательностей фрагментов индивидуальных белков);

Идентификация каждого белка и измерение его концентрации, документирование, обработка результатов;

Интерпретация полученных данных с помощью методов биоинформатики - анализ баз данных, получение дифференциального профиля белков.

С помощью такой процедуры уже открыты новые белковые маркеры и получены впечатляющие результаты в области кардиоваскулярной протеомики и онкопроте-омики.

Частные аспекты протеомики

Двумя основными разновидностями протеомики являются структурная и функциональная. Первая изучает

НАУЧНЫЕ СООБЩЕНИЯ

структуру индивидуальных белков, в то время как вторая рассматривает их во взаимодействии с другими белками, исследует происходящие при этом конформационные, биохимические и функциональные изменения. Совокупность всех белков клетки, взаимодействующих с конкретной белковой молекулой-мишенью, носит название «интерактом».

Первичным диагностическим целям служит прежде всего структурная протеомика, в то время как функциональная является в большей степени стезей научных исследований, а также фундаментом для разработок принципиально новых лекарственных средств, работающих с конкретными и индивидуальными фармакотерапевтическими мишенями клеточного и молекулярного уровня.

Протеомика плазмы крови

Среди всех тканей организма плазма крови в наибольшей степени отражает белковый состав: протеом плазмы включает около 1/10 всех присутствующих в организме белков. Среди присутствующих в плазме белков выделяют:

Белки, функционирующие в плазме;

Иммуноглобулины;

Гормоны;

Цитокины;

Транзиторно проходящие через плазму белки;

Внутриклеточные белки, попадающие в плазму при

разрушении или повышении проницаемости клеток;

Белки, отсутствующие в норме и секретируемые малигнизированными клетками;

Чужеродные белки .

Не меньше 1/2 белков плазмы существует в виде мультипротеиновых комплексов. С помощью особых молекулярных меток, вводимых в молекулу белка, возможны выделение и изоляция таких комплексов в целях их дальнейшего исследования на предмет особенностей конкретного интерактома.

К настоящему времени идентифицировано более 10 000 белков плазмы на основе масс-спектрометрического анализа одного или двух пептидов каждого белка и более 3000 белков - при идентификации двух и более пептидов. Почти 900 белков плазмы идентифицированы с достоверностью 95%.

Возможности, открываемые протеомным анализом плазмы крови, весьма заманчивы. Однако плазма как типовой тест-образец имеет и ряд существенных недостатков. К таковым относится очень большой (до 10 порядков) разброс концентраций белков и преобладание среди них диагностически мало значимых. При изучении изменений протеома плазмы, например при сердечнососудистой патологии, сначала нужно найти способ отделить эти незначимые белки, что представляет значительную трудность. Следовательно, оптимальным по чувствительности и специфичности будет исследование образца, полученного при биопсии органа-мишени, что, однако, не всегда применимо.

Следует отметить, что, несмотря на интенсивные исследования в данной области, темпы внедрения новых биомаркеров в клиническую практику остаются низкими . Это объясняется как объективными, так и субъективными причинами. Одной из них следует считать преимущественно эмпирический подход к организации исследований без их должного теоретического обоснования, а также недостаточное развитие инфраструктурных связей между исследовательскими центрами, отсутствие унифицированной номенклатуры и проблемы с систематизацией имеющихся данных. Фактические данные в немалой

мере остаются разрозненными, поскольку темпы их накопления опережают возможности науки к их интеграции.

Кардиоваскулярная протеомика

Этот раздел протеомики относится к развивающимся наиболее интенсивно. Уже созданы базы данных по сотням белков протеома миокарда, уровни которых изменяются при хронических и острых сердечно-сосудистых патологиях. Наибольшие успехи достигнуты в изучении дилатационной кардиомиопатии. При этом заболевании изменяется содержание более 100 белков, которые можно разделить на 3 основные группы:

Белки, связанные с энергией и метаболизмом;

Белки, индуцируемые стрессом;

Белки, обеспечивающие контрактильные функции

и формирование цитосклета.

Такие результаты вполне соответствуют современным представлениям о патогенезе дилатационной кардиомиопатии.

Не столь значительны успехи в изучении патогенеза ишемической болезни сердца и хронической сердечной недостаточности. Не всегда имеется возможность адекватно моделировать приведенные виды патологии: некоторые результаты, получаемые на животных моделях, не согласуются с таковыми на человеке. Большая часть достоверных результатов связана с ролью в развитии и предотвращении ишемической болезни сердца и хронической сердечной недостаточности т.н. белков теплового шока (Hsp 27) . Особое внимание уделяют изучению протеома при реперфузионном синдроме. После реперфузионной травмы обнаруживают изменения структуры сократительных белков: MLC-2 (легкая цепь миозина 2), всех трех белков тропонинового комплекса. Исследуют сигнальные механизмы, задействованные в патогенезе реперфузионного синдрома, хотя целостная картина белковых взаимодействий до конца все еще не установлена. Проводились исследования по изучению феномена дистантного прекондиционирования миокарда перед ишемической травмой, когда гипоксическое состояние создают сначала в каком-либо ином органе, а затем в сердце. При этом уменьшается реперфузионное повреждение. Однако до настоящего времени выявить кандидатные молекулы на роль гуморальных медиаторов прекондиционирования не удалось.

Изучение протеомики атеросклероза затруднено вследствие значительной функциональной гетерогенности фенотипа эндотелиальной ткани. Тем не менее, получены модели белкового профиля атеросклеротических бляшек, в которых обнаруживают изменения содержания таких белков, как Hsp27, кристаллинов, фактора некроза опухолей а, катепсинов, пероксиредоксинов и др., всего около 80 белков . Для создания биомаркеров атеросклероза предлагается исследовать профили белков плазмы, связанных с воспалением. Также изучается секреция белков атеросклеротическими бляшками in vitro.

При хронической сердечной недостаточности единственным клинически приемлемым биомаркером является В-натрийуретический пептид. Что касается ишемической болезни сердца, то здесь число биомаркеров значительно больше: сердечные тропонины, креатинкиназа и др. Однако их содержание повышается лишь на поздних стадиях ишемии, поэтому ведется поиск новых биомаркеров, позволяющих диагностировать ее ранние стадии. Другая область интересов - биомаркеры, специфичные именно для ишемии (а не некроза миокарда). На данный момент существует только один такой маркер - модифицированный ишемией альбумин (ischemic-

ВЕСТНИК РАМН /2013/ № 1

modified albumin, IMA). Тем не менее, невысокая специфичность затрудняет его использование вне комплекса с традиционными биомаркерами.

Исследование протеома сердца сопряжено со значительными трудностями. Наиболее точным методом анализа могла бы стать биопсия, но она трудновыполнима. В случае же исследования плазмы крови выделение среди огромной массы белков тех, которые могли бы иметь клиническое значение, представляет собой чрезвычайно непростую задачу. В связи с этим в исследованиях на животных нередко используют перфузию изолированных сердец кровезамещающими растворами с последующим исследованием выделенных тканями в раствор белков. Другим направлением является исследование перикардиальной жидкости. Так, у пациентов, которым проводилось кардиохирургическое вмешательство, исследовали уровень в перикардиальной жидкости белка H-FABP (белок, связывающий жирные кислоты, сердечный тип). Было обнаружено, что при ишемии уровень этого отсутствующего в плазме крови белка перикардиальной жидкости повышается .

Протеомика заболеваний легких

При исследованиях заболеваний легких, с точки зрения протеомики, в качестве образцов используют легочную ткань, жидкость, выстилающую эпителий, альвеоло-циты, плазму крови.

Для изучения протеома жидкости, выстилающей эпителий, в качестве образца применяют бронхоальвеолярную жидкость. Некоторые специфичные для легочной ткани белки, такие как глутатион^-трансфераза и белок сурфактанта B, представлены в этой жидкости значительно больше, чем в плазме. Исследуют изменения бронхоальвеолярной жидкости при различных заболеваниях: саркоидозе, муковисцидозе, мезотелиоме, идиопатическом фиброзирующем альвеолите и др. Исследование бронхоальвеолярной жидкости также позволяет выделять альвеолярные макрофаги для последующей оценки их протеомного профиля .

Для получения образцов легочной ткани необходимо использование инвазивных технологий. Эти исследования в основном направлены на оценку изменений протеома при раке легкого. В исследовании D.P. Carbone обнаружено, что содержание белков SUMO-2 (малый убиквитинопо-добный белок-2), тимозина-р4 и убиквитина коррелирует с прогнозом при немелкоклеточном раке легкого. Проводились исследования для определения белковых паттернов, отличающих инвазивные опухоли от нормального эпителия бронхов . Для повышения достоверности результатов при получении образцов использовали лазерную микродиссекцию с целью предотвращения захвата здоровых тканей. Тем не менее, прежде чем станет возможным внедрение новых биомаркеров в клиническую практику, потребуются длительные клинические испытания.

Для построения протеомных профилей аденокарцином также применяют исследование плазмы крови. Так, при мечении радиоактивным кислородом было обнаружено 211 белков, уровень которых при аденокарциноме легкого у мышей повышался, и 246 белков, содержание которых снижалось.

Онкопротеомика

Основные задачи онкопротеомики таковы:

Построение протеомов и анализ их динамики при возникновении и развитии различных опухолей;

Идентификация путей передачи клеточных сигналов, приводящих к онкогенезу;

Идентификация маркеров для диагностики онкологических заболеваний и для мониторинга ответа опухоли и организма на хирургическое вмешательство и на разные типы терапии;

Определение иммунного ответа на онкогенез. Онкомаркеры - макромолекулы (обычно белки

с липидным или углеводным компонентом), наличие и концентрации которых в плазме крови и/или другой биологической жидкости коррелируют в определенной степени с наличием и ростом злокачественной опухоли. Среди большого разнообразия показателей, использующихся в диагностике опухолей, есть как специфические онкомаркеры, так и некоторые вещества, концентрация которых может меняться при различных патологических процессах, в т.ч. и опухолевых. К наиболее специфичным онкомаркерам, практически отсутствующим в здоровом организме, относятся эмбриональные антигены (синтез которых прекращается на ранних стадиях эмбрионального развития и дерепрессируется при злокачественной трансформации): раковый эмбриональный антиген, а-фетопротеин. Опухоль-специфические антигены - молекулы (секреторные продукты или мембранные гликопротеины), экспрессируемые опухолевыми клетками более интенсивно, чем нормальными. К ним относятся СА 19-9, СА 15-3 (мембранные гликопротеины), а также простат-специфический антиген (ПСА) - секреторный продукт гландулоцитов простаты. Кроме того, в качестве онкомаркеров могут выступать гормоны (хорионический гонадотропин) и вещества других групп (тиреоглобулин, Р2-микроглобулин и др.) . Для прогнозирования течения заболевания исследуют белки-маркеры пролиферативной активности и белки-регуляторы апоптоза (рис. 1).

Области клинического применения онкомаркеров следующие:

Ранняя диагностика онкологических заболеваний;

Мониторинг и оценка эффективности лечения;

Определение прогноза.

Исходя из вышесказанного, основными требованиями к онкомаркеру являются достаточно высокая чувствительность и специфичность, корреляция с объемом опухоли, способность давать информацию о локализации опухоли.

Чувствительность и специфичность большинства доступных в настоящее время опухолевых биомаркеров часто оказывается недостаточной. Клинически пригодными считают маркеры, для которых чувствительность при специфичности 95% составляет более 50%, и лишь немногие из них при указанном уровне специфичности способны демонстрировать чувствительность более 70%. Существует 2 подхода к поиску новых онкомаркеров: первый предполагает направленные исследования на основе современных знаний о канцерогенезе, проверку определенных гипотез; второй - эмпирический поиск путем сравнения протеомов нормальных и опухолевых клеток либо путем сравнения белкового профиля сывороток здоровых и больных пациентов, пациентов; имеющих и не имеющих факторы риска.

Рассмотрим возможности применения современных онкомаркеров в 3 указанных выше аспектах.

1. Диагностика. Ввиду недостаточной чувствительности большинство онкомаркеров непригодно для скрининговых исследований в общей популяции. Однако некоторые из них могут эффективно применяться для ранней диагностики в группах риска, где вероятность заболевания изначально выше. Так, скрининг на ПСА

НАУЧНЫЕ СООБЩЕНИЯ

Анализ экспрессии генов

Белковые

микрочипы

Масс-спектрометрия

Автоматизированный

ИГХ-профили

А____________

Оценка прогноза Выбор метода лечения Получение новых антител

Иммуногистохимические (ИГХ) методики

Сыворотка

Непрямые методы

Мониторинг лечения

Л_________

Выбор метода лечения Мониторинг эффективности лечения выявление побочных эффектов

Базы данных

Прямые методы

Диагностика

К___________

Рання диагностика в группах риска Диагностика рецедивов

Рис. Технологии протеомики в диагностике онкологических заболеваний.

осуществляют в группе мужчин старше 50 лет; скрининг на а-фетопротеин (маркер гепатоцеллюлярной карциномы) - у больных циррозом печени; на кальцитонин (маркер медуллярного рака щитовидной железы) - у лиц с отягощенным наследственным анамнезом.

2. Мониторинг течения заболевания. В настоящее время именно для этих целей онкомаркеры применяют наиболее широко. Признаком успешной радикальной операции является стойкое снижение концентрации маркера. Последующее ее повышение свидетельствует, в зависимости от времени и скорости нарастания, о наличии резидуальной опухоли, возникновении рецидива или отделенном метастазировании.

3. Прогнозирование течения заболевания и определение лечебной тактики. Уровень многих онкомаркеров коррелирует с объемом первичной опухоли и резко возрастает при местном и отдаленном метастазировании. Так, к примеру, при хроническом лимфолейкозе содержание маркера сывороточной дезокситимидинсинтетазы коррелирует с вариантом течения заболевания (стабильным или прогрессирующим) .

Для прогнозирования течения заболевания определяют также экспрессию маркеров пролиферативной активности: белка Ki-67, PCNA, циклинов (например, циклина D1), ингибиторов циклин-зависимых киназ. Большое прогностическое значение имеют уровни белков-регуляторов апоптоза (Bcl-2, Bcl-x, Bax, Bak и др.) . В последнее время интенсивно исследуют ингибиторы апоптоза - сервивин, теломеразу. Повышение концентрации этих молекул было продемонстрировано для опухолей многих, хотя и не всех локализаций. При этом уровень их экспрессии коррелирует со стадией развития опухоли. Для карцином некоторых типов доказана корреляция течения с уровнем экпрессии белка р53, а также числом мутантных форм этого белка .

Тип исследуемого маркера и значимость результата варьируют в зависимости от гистологического строения и локализации опухоли. Окончательное заключение выносится после комплексной оценки с другими факторами. Важной задачей онкологии является идентификация сигнальных путей, вовлеченных в процесс канцерогенеза. Несомненна роль в этом процессе белков-регуляторов апоптоза: р53, белков семейства bcr и др. . В фокусе функциональной протеомики находится изучение инте-рактомов указанных белков, иными словами - реконструкция молекулярных взаимодействий, в которые эти белки вовлечены.

Основная проблема во внедрении онкопротеомики в практику состоит в сложности обучения онкологов чтению карт онкотранскриптомов и онкопротеомов.

Виды белковых молекул и особенности интерактомов

Хотя многие белки осуществляют свои функции независимо, подавляющее большинство из них требует высокоспецифичных взаимодействий с другими белками организма для проявления своей биологической активности. Примеры различных белок-белковых взаимодействий, встречающихся в сложных биологических системах:

Белок-белковые интерактомы в строго определенных клеточных компартментах;

Белки-мессенджеры, взаимодействующие с рецепторами на внешней поверхности клеточной мембраны, что является необходимым условием для запуска сигнальных каскадов;

Белки, формирующие сетевые и структурные взаимодействия, структурные взаимосвязи на межклеточном уровне;

Ингибиторы ферментов;

ВЕСТНИК РАМН /2013/ № 1

Модификация (часто с последующей денатурацией) в результате действия ферментов;

Взаимодействия белковых субъединиц, приводящих к аллостерическим эффектам в составе мультимерных биокомплексов;

Белок-белковые взаимодействия, лежащие в основе двигательных функций отдельных органелл, органов или организма в целом (мышечное сокращение). Белковые взаимодействия обычно подразделяют

на стабильные и транзиторные, причем оба типа могут обеспечиваться как сильными, так и слабыми межмолекулярными связями .

Стабильное взаимодействие наблюдается в белках, состоящих из нескольких субъединиц-комплексов, полипептидных цепей. Типичным примером комплексных белковых молекул, состоящих из нескольких стабильно связанных полипептидных цепей, могут служить гемоглобин и полимеразы.

Транзиторные белок-белковые взаимодействия участвуют в контроле большинстви внутри- и внеклеточных сигнальных процессов. Транзиторные взаимодействия обычно требуют определенного набори условий, который способствует развитию различных физиологических эффектов, а именно: фосфорилирования, конформацион-ных изменений или локализации на дискретной области 70 клетки. Временно взаимодействующие белки вовлечены в широкий спектр клеточных процессов, в т.ч. в каталитическую модификацию белка, транспортную, резервную, сигнальную, регуляторную, рецепторную и моторную функции.

Транзиторное белок-белковое взаимодействие наблюдается и при транспорте белков через поры мембраны, при деформации нативных белков, на отдельных этапах цикла трансляции, переформировании клеточных структур в ходе клеточного цикла (цитоплазматические микро-филаменты, комплекс ядерных пор и др.) .

Белки могут связываться друг с другом с помощью гидрофобных/гидрофильных связей, Ван-дер-ваальсовых сил, ионных мостов между связывающими доменами на каждом белке. Эти домены могут быть представлены небольшим участком поверхности белка и состоять всего лишь из нескольких пептидов. С другой стороны, широко распространены белки с длинными полипептидными участками, охватывающими сотни аминокислот; прочность их связывания зависит от размера и свойств связывающего домена. Одной из самых распространенных внутрибелковых связей, обеспечивающей стабильность всей молекулы, является лейциновая «застежка-молния».

В лейциновой «застежке» аминокислота лейцин находится приблизительно в каждом 8-м положении а-спирали, в результате чего лейциновые остатки оказываются на одной ее стороне, образуя амфипатическую спираль, в которой одна сторона обладает гидрофобными свойствами. Таким образом, лейциновая «застежка» образует димерный белок благодаря связыванию двух параллельных а-спиралей подобно застежке-молнии.

Два Src-гомологичных (SH) домена, SH2 и SH3, являются примером временного связывания доменов, которые соединяются короткими пептидными последовательностями и обычно встречаются в сигнальных белках. Sffi-домен «признает» только пептидные последовательности с фосфорилированными остатками тирозина, что является признаком активированного белка. Другими словами, область SH2 - наиболее важная на рецепторе, участвующем в сигнальном пути фактора роста, в котором с помощью лиганд-рецептор-опосредован-ного фосфорилирования остатков тирозина с помощью Sffi-доменов распознаются эти остатки. SH3-домены обычно распознают богатые пролином последовательности пептидов и, как правило, встречаются в таких ферментах, как киназы, фосфолипазы и ГТФазы. Они предназначены для выявления целевых белков .

Заключение

Протеомика, будучи наукой фундаментальной, тем не менее, незаменима при решении ряда практических медицинских и прикладных научных задач. Исследование различных биологических жидкостей организма с применением современных технологических приемов проте-омики может предоставить врачу-диагносту достаточные объемы информации, необходимые для однозначной постановки диагноза либо оценки рисков определенного заболевания у конкретного пациента. Построение алгоритмов доклинического и клинического мониторинга больных с использованием конгломератов лабораторно-диагностических процедур, включающих геномные, транскриптомные и протеомные методы анализа, а также биоинформационные приемы обработки и анализа данных, является залогом успешного выявления патологического состояния в стадии скрытого течения, верификации диагноза, определения и возможной предикции типа и характера течения болезни, а также мониторинга реакций организма пациента в ответ на применяемый вид терапии.

ЛИТЕРАТУРА

1. Alaoui-Jamali M.A., Xu Y.J. Proteomic technology for biomarker profiling in cancer: an update. J. Zhejiang. Univ. Sci. B. 2006; 6: 411-420.

2. Введение в молекулярную диагностику. Под ред. М.С. Пальцева. М.: Медицина. 2010. 368 с.

3. Anderson N.L., Anderson N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. CellProteomics. 2002; 11: 845-867.

4. Sturgeon C. Perspectives in clinical proteomics conference: translating clinical proteomics into clinical practice. Exp. Rev. Proteomics. 2010; 4: 469-471.

5. McGregor E., Dunn M.J. Proteomics of heart disease. Hum. Mol. Genet. 2003; 2: 135-144.

6. Edwards A.V, White M.Y., Cordwell S.J. The role of pro-teomics in clinical cardiovascular biomarker discovery. Mol. Cell Pro-teomics. 2008; 10: 1824-1837.

7. Bowler R.P, Ellison M.C., Reisdorph N. Proteomics in pulmonary medicine. Chest. 2006; 2: 567-574.