Физические свойства щелочноземельных. Характерные химические свойства Be, Mg и щелочноземельных металлов

Свойства щелочноземельных металлов

Физические свойства

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t╟пл. и t╟кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства

1. Очень реакционноспособны.

2. Обладают положительной валентностью +2.

3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.

4. Обладают большим сродством к кислороду (восстановители).

5. С водородом образуют солеобразные гидриды ЭH 2 .

6. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.

Нахождение в природе

3BeO ∙ Al 2 O 3 ∙ 6SiO 2 берилл

Mg

MgCO 3 магнезит

CaCO 3 ∙ MgCO 3 доломит

KCl ∙ MgSO 4 ∙ 3H 2 O каинит

KCl ∙ MgCl 2 ∙ 6H 2 O карналлит

CaCO 3 кальцит (известняк, мрамор и др.)

Ca 3 (PO 4) 2 апатит, фосфорит

CaSO 4 ∙ 2H 2 O гипс

CaSO 4 ангидрит

CaF 2 плавиковый шпат (флюорит)

SrSO 4 целестин

SrCO 3 стронцианит

BaSO 4 барит

BaCO 3 витерит

Получение

Бериллий получают восстановлением фторида:

BeF 2 + Mg═ t ═ Be + MgF 2

Барий получают восстановлением оксида:

3BaO + 2Al═ t ═ 3Ba + Al 2 O 3

Остальные металлы получают электролизом расплавов хлоридов:

CaCl 2 = Ca + Cl 2 ╜

катод: Ca 2+ + 2ē = Ca 0

анод: 2Cl - - 2ē = Cl 0 2

MgO + C = Mg + CO

Металлы главной подгруппы II группы - сильные восстановители; в соединениях проявляют только степень окисления +2. Активность металлов и их восстановительная способность увеличивается в ряду: Be Mg Ca Sr Ba╝

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являются сильными основаниями:

Mg + 2H 2 O═ t ═ Mg(OH) 2 + H 2

Ca + 2H 2 O = Ca(OH) 2 + H 2 ╜

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид BaO 2:

2Mg + O 2 = 2MgO

Ba + O 2 = BaO 2

3. С другими неметаллами образуются бинарные соединения:

Be + Cl 2 = BeCl 2 (галогениды)

Ba + S = BaS (сульфиды)

3Mg + N 2 = Mg 3 N 2 (нитриды)

Ca + H 2 = CaH 2 (гидриды)

Ca + 2C = CaC 2 (карбиды)

3Ba + 2P = Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все металлы растворяются в кислотах:

Ca + 2HCl = CaCl 2 + H 2 ╜

Mg + H 2 SO 4 (разб.) = MgSO 4 + H 2 ╜

Бериллий также растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O = Na 2 + H 2 ╜

5. Качественная реакция на катионы щелочноземельных металлов - окрашивание пламени в следующие цвета:

Ca 2+ - темно-оранжевый

Sr 2+ - темно-красный

Ba 2+ - светло-зеленый

Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями:

Сульфат бария - белый осадок, нерастворимый в минеральных кислотах.

Оксиды щелочноземельных металлов

Получение

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 ═ t ═ CaO + CO 2 ╜

2Mg(NO 3) 2 ═ t ═ 2MgO + 4NO 2 ╜ + O 2 ╜

Химические свойства

Типичные основные оксиды. Реагируют с водой (кроме BeO), кислотными оксидами и кислотами

MgO + H 2 O = Mg(OH) 2

3CaO + P 2 O 5 = Ca 3 (PO 4) 2

BeO + 2HNO 3 = Be(NO 3) 2 + H 2 O

BeO - амфотерный оксид, растворяется в щелочах:

BeO + 2NaOH + H 2 O = Na 2

Гидроксиды щелочноземельных металлов R(OH) 2

Получение

Реакции щелочноземельных металлов или их оксидов с водой: Ba + 2H 2 O = Ba(OH) 2 + H 2

CaO(негашеная известь) + H 2 O = Ca(OH) 2 (гашеная известь)

Химические свойства

Гидроксиды R(OH) 2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH) 2 - нерастворим в воде, растворяется в щелочах). Основность R(OH) 2 увеличивается с увеличением атомного номера:

Be(OH) 2 - амфотерный гидроксид

Mg(OH) 2 - слабое основание

остальные гидроксиды - сильные основания (щелочи).

1) Реакции с кислотными оксидами:

Ca(OH) 2 + SO 2 = CaSO 3 ¯ + H 2 O

Ba(OH) 2 + CO 2 = BaCO 3 ¯ + H 2 O

2) Реакции с кислотами:

Mg(OH) 2 + 2CH 3 COOH = (CH 3 COO) 2 Mg + 2H 2 O

Ba(OH) 2 + 2HNO 3 = Ba(NO 3) 2 + 2H 2 O

3) Реакции обмена с солями:

Ba(OH) 2 + K 2 SO 4 = BaSO 4 ¯+ 2KOH

4) Реакция гидроксида бериллия со щелочами:

Be(OH) 2 + 2NaOH = Na 2

Жесткость воды

Природная вода, содержащая ионы Ca 2+ и Mg 2+ , называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость - хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca 2+ и Mg 2+ :

1) кипячением:

Сa(HCO 3) 2 ═ t ═ CaCO 3 ¯ + CO 2 + H 2 O

Mg(HCO 3) 2 ═ t═ MgCO 3 ¯ + CO 2 + H 2 O

2) добавлением известкового молока:

Ca(HCO 3) 2 + Ca(OH) 2 = 2CaCO 3 ¯ + 2H 2 O

3) добавлением соды:

Ca(HCO 3) 2 + Na 2 CO 3 = CaCO 3 ¯+ 2NaHCO 3

CaSO 4 + Na 2 CO 3 = CaCO 3 ¯ + Na 2 SO 4

MgCl 2 + Na 2 CO 3 = MgCO 3 ¯ + 2NaCl

Для удаления временной жесткости используют все четыре способа, а для постоянной - только два последних.

Термическое разложение нитратов.

Э(NO3)2 =t= ЭO + 2NO2 + 1/2O2

Особенности химиии берилия.

Be(OH)2 + 2NaOH (изб) = Na2

Al(OH)3 + 3NaOH (изб) = Na3

Be + 2NaOH + 2H2O = Na2 + H2

Al + 3NaOH + 3H2O = Na3 + 3/2H2

Be, Al + HNO3 (Конц) = пассивация

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

НАХОЖДЕНИЕ В ПРИРОДЕ

В земной коре содержится бериллия - 0,00053%, магния - 1,95%, кальция - 3,38%, стронция - 0,014%, бария - 0,026%, радий - искусственный элемент.

Встречаются в природе только в виде соединений - силикатов, алюмосиликатов, карбонатов, фосфатов, сульфатов и т.д.

ПОЛУЧЕНИЕ

1. Бериллий получают восстановлением фторида:

BeF 2 + Mg t ˚ C → Be + MgF 2

2. Барий получают восстановлением оксида:

3BaO + 2Al t ˚ C → 3Ba + Al 2 O 3

3. Остальные металлы получают электролизом расплавов хлоридов:

Т.к. металлы данной подгруппы сильные восстановители, то получение возможно только путем электролиза расплавов солей. В случае Са обычно используют CaCl 2 (c добавкой CaF 2 для снижения температуры плавления)

CaCl 2 =Ca+Cl 2

ФИЗИЧЕСКИЕ СВОЙСТВА

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип, плотностями и твердостью.

ПРИМЕНЕНИЕ

Бериллий (Амфотерен) Магний Ca, Sr, Ba, Ra
1. Изготовление теплозащитных конструкций для косм. кораблей (жаропрочность, теплоёмкость бериллия) 2. Бериллиевые бронзы (лёгкость, твёрдость, жаростойкость, антикоррозионность сплавов, прочность на разрыв выше стали, можно прокатывать в ленты толщиной 0,1 мм) 3. В атомных реакторах, рентгенотехнике, радиоэлектронике 4. Сплав Be, Ni, W- в Швейцарии делают пружины для часов Но Be –хрупок, ядовит и очень дорогой 1. Получение металлов – магнийтермия (титан, уран, цирконий и др) 2. Для получения сверхлёгких сплавов (самолётостроение, производство автомобилей) 3. В оргсинтезе 4. Для изготовления осветительных и зажигательных ракет. 1. Изготовление свинцово-кадмиевых сплавов, необходимых при производстве подшипников. 2. Стронций – восстановитель в производстве урана. Люминофоры - соли стронция. 3. Используют в качестве геттеров, веществ для создания вакуума в электроприборах. Кальций Получение редких металлов, входит в состав сплавов. Барий Газопоглотитель в электронно-лучевых трубках. Радий Рентгенодиагностика, исследовательские работы.

ХИМИЧЕСКИЕ СВОЙСТВА

1. Очень реакционноспособны, сильные восстановители. Активность металлов и их восстановительная способность увеличивается в ряду: Be–Mg–Ca–Sr–Ba

2. Обладают степенью окисления +2.

3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.

4. С водородом образуют солеобразные гидриды ЭH 2 .

5. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.

Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде, но с горячей водой магний образует основание Mg(OH) 2.

В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являются сильными основаниями:

Ве + H 2 O → ВеO+ H 2 ­

Ca + 2H 2 O → Ca(OH) 2 + H 2 ­

Реакция с кислородом.

Все металлы образуют оксиды RO, барий образует пероксид – BaO 2:

2Mg + O 2 → 2MgO

Ba + O 2 → BaO 2

3. С другими неметаллами образуются бинарные соединения:

Be + Cl 2 → BeCl 2 (галогениды)

Ba + S → BaS (сульфиды)

3Mg + N 2 → Mg 3 N 2 (нитриды)

Ca + H 2 → CaH 2 (гидриды)

Ca + 2C → CaC 2 (карбиды)

3Ba + 2P → Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все металлы растворяются в кислотах:

Ca + 2HCl → CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) → MgSO 4 + H 2 ­

Бериллий также растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O → Na 2 + H 2 ­

5. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета:

Ca 2+ - темно-оранжевый

Sr 2+ - темно-красный

Ba 2+ - светло-зеленый

Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями:

BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl

Ba 2+ + SO 4 2- → BaSO 4 ↓

Сульфат бария – белый осадок, нерастворимый в минеральных кислотах.

Оксиды щелочноземельных металлов

Получение

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 t ˚ C → CaO + CO 2 ­

2Mg(NO 3) 2 t˚C → 2MgO + 4NO 2 ­ + O 2 ­

Химические свойства

Типичные основные оксиды. Реагируют с водой (кроме BeO и MgO), кислотными оксидами и кислотами

СаO + H 2 O → Са(OH) 2

3CaO + P 2 O 5 → Ca 3 (PO 4) 2

BeO + 2HNO 3 → Be(NO 3) 2 + H 2 O

BeO - амфотерный оксид, растворяется в щелочах:

BeO + 2NaOH + H 2 O → Na 2

Гидроксиды щелочноземельных металлов R(OH) 2

Получение

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 ­

CaO (негашеная известь) + H 2 O → Ca(OH) 2 (гашеная известь)

Химические свойства

Гидроксиды R(OH) 2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH) 2 – нерастворим в воде, растворяется в щелочах ). Основность R(OH) 2 увеличивается с увеличением атомного номера:

Be(OH) 2 – амфотерный гидроксид

Mg(OH) 2 – слабое основание

Са(OH) 2 - щелочь

остальные гидроксиды - сильные основания (щелочи).

1) Реакции с кислотными оксидами:

Ca(OH) 2 + СO 2 → CaСO 3 ↓ + H 2 O ! Качественная реакция на углекислый газ

Ba(OH) 2 + SO 2 → BaSO 3 ↓ + H 2 O

2) Реакции с кислотами:

Ba(OH) 2 + 2HNO 3 → Ba(NO 3) 2 + 2H 2 O

3) Реакции обмена с солями:

Ba(OH) 2 + K 2 SO 4 → BaSO 4 ↓+ 2KOH

4) Реакция гидроксида бериллия со щелочами:

Be(OH) 2 + 2NaOH → Na 2

Жесткость воды

Природная вода, содержащая ионы Ca 2+ и Mg 2+ , называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость – хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca 2+ и Mg 2+

Химические свойства щелочных и щелочноземельных металлов схожи. На внешнем энергетическом уровне щелочных металлов находится один электрон, щелочноземельных - два. При реакциях металлы легко расстаются с валентными электронами, проявляя свойства сильного восстановителя.

Щелочные

В I группу периодической таблицы входят щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

Рис. 1. Щелочные металлы.

Они отличаются мягкостью (можно разрезать ножом), низкими температурами плавления и кипения. Это наиболее активные металлы.

Химические свойства щелочных металлов представлены в таблице.

Реакция

Особенности

Уравнение

С кислородом

Быстро окисляются на воздухе. Литий образует оксид при температуре выше 200°C. Натрий образует смесь - 80 % пероксида (R 2 O 2) и 20 % оксида. Остальные металлы образуют надпероксиды (RO 2)

4Li + O 2 → 2Li 2 O;

2Na + О 2 → Na 2 O 2 ;

Rb + O 2 → RbO 2

Реагирует только литий при комнатной температуре

6Li + N 2 → 2Li 3 N

С галогенами

Реакция проходит бурно

2Na + Cl 2 → 2NaCl

С неметаллами

При нагревании. Образуют сульфиды, гидриды, фосфиды, силициды. С углеродом реагируют только литий и натрий, образуя карбиды

2K + S → K 2 S;

2Na + H 2 → 2NaH;

2Cs + 5P → Cs 2 P 5 ;

Rb + Si → RbSi;

2Li + 2C → Li 2 C 2

Спокойно реагирует только литий. Натрий горит жёлтым пламенем. Калий реагирует со вспышкой. Цезий и рубидий взрываются

2Na + 2H 2 O → 2NaOH + H 2 -

С кислотами

С соляной, фосфорной, разбавленной серной кислотами реагируют с взрывом. При реакции с концентрированной серной кислотой выделяется сероводород, с концентрированной азотной кислотой образует оксид азота (I), с разбавленной азотной кислотой - азот

2Na + 2HCl → 2NaCl + H 2 ;

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O;

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O + 5H 2 O;

10Na + 12HNO 3 (разб) → N 2 + 10NaNO 3 + 6H 2 O

С аммиаком

Образуют амины

2Li + 2NH 3 → 2LiNH 2 + H 2

Могут реагировать с органическими кислотами и спиртами.

Щелочноземельные

Во II группе таблицы Менделеева находятся щелочноземельные металлы:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Рис. 2. Щелочноземельные металлы.

В отличие от щелочных металлов они более твёрдые. Ножом можно разрезать только стронций. Наиболее плотный металл - радий (5,5 г/см 3).

Бериллий взаимодействует с кислородом только при нагревании до 900°С. С водородом и водой не реагирует при любых условиях. Магний окисляется при температуре 650°С и взаимодействует с водородом под высоким давлением.

В таблице отражены основные химические свойства щелочноземельных металлов.

Реакция

Особенности

Уравнение

С кислородом

Образуют оксидные плёнки. При нагревании до 500°С самовоспламеняются

2Mg + O 2 → 2MgO

С водородом

При высокой температуре образуют гидриды

Sr + H 2 → SrH 2

С галогенами и неметаллами

Реагируют при нагревании

Be + Cl 2 → BeCl 2 ;

Mg + S → MgS;

3Ca + 2P → Ca 3 P 2 ;

3Ca + N 2 → Ca 3 N 2 ;

Ba + 2C → BaC 2

При комнатной температуре

Mg + 2H 2 O → Mg(OH) 2 + H 2

С кислотами

Реагируют все металлы с образованием солей

4Ca + 10HNO 3 (конц.) → 4Ca(NO 3) 2 + N 2 O + 5H 2 O

Со щелочами

Реагирует только бериллий

Be + 2NaOH + 2H 2 O → Na 2 + H 2

Замещение

Замещают менее активные металлы в оксидах. Исключение - бериллий

2Mg + ZrO 2 → Zr + 2MgO

Ионы щелочных и щелочноземельных металлов в солях легко обнаружить по изменению цвета пламени. Соли натрия горят жёлтым пламенем, калия - фиолетовым, рубидия - красным, кальция - кирпично-красным, бария - жёлто-зелёным. Соли этих металлов используют для создания фейерверков.

Рис. 3. Качественная реакция.

Что мы узнали?

Щелочные и щелочноземельные металлы - активные элементы периодической таблицы, вступающие в реакции с простыми и сложными веществами. Щелочные металлы более мягкие, бурно реагируют с водой и галогенами, легко окисляются на воздухе, образуя оксиды, пероксиды, надпероксиды, взаимодействуют с кислотами и аммиаком. При нагревании вступают в реакцию с неметаллами. Щелочноземельные металлы реагируют с неметаллами, кислотами, водой. Бериллий не взаимодействует с водородом и водой, но реагирует со щелочами и с кислородом при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 113.

Класс: 9

Тип урока: изучение нового материала.

Вид урока: комбинированный урок

Задачи урока:

Обучающие: формирование знаний учащихся о щелочноземельных элементах как типичных металлах, понятия о взаимосвязи строения атомов со свойствами (физическими и химическими).

Развивающие: развитие умений исследовательской деятельности, умения добывать информацию из различных источников, сравнивать, обобщать, делать выводы.

Воспитывающие: воспитание устойчивого интереса к предмету, воспитание таких нравственных качеств как аккуратность, дисциплина, самостоятельность, ответственное отношение к порученному делу.

Методы: проблемные, поисковые, лабораторная работа, самостоятельная работа учащихся.

Оснащение: компьютер, таблица по технике безопасности, диск “Виртуальная лаборатория по химии”, презентация .

Ход урока

1. Организационный момент.

2. Вводное слово учителя.

Мы изучаем раздел, металлы, и вы знаете, что металлы имеют большое значение в жизни современного человека. На предыдущих уроках мы познакомились с элементами I группы главной подгруппы – щелочными металлами. Сегодня приступаем к изучению металлов II группы главной подгруппы - щелочноземельных металлов. Для того чтобы усвоить материал урока, нам необходимо вспомнить наиболее важные вопросы, которые рассматривали на предыдущих уроках.

3. Актуализация знаний.

Беседа.

Где находятся щелочные металлы в периодической системе Д.И. Менделеева?

Ученик:

В периодической системе щелочные металлы расположены в I группе главной подгруппе, на внешнем уровне 1 электрон, который щелочные металлы легко отдают, поэтому во всех соединениях они проявляют степень окисления +1. С увеличением размеров атомов от лития к францию энергия ионизации атомов уменьшается и, как правило, возрастает их химическая активность.

Учитель:

Физические свойства щелочных металлов?

Ученик:

Все щелочные металлы серебристо-белого цвета с незначительными оттенками, лёгкие, мягкие и легкоплавкие. Их твёрдость и температура плавления закономерно снижаются от лития к цезию.

Учитель:

Знания Химических свойств щелочных металлов проверим в виде небольшой проверочной работы по вариантам:

  • I вариант: Напишите уравнения реакции взаимодействия натрия с кислородом, хлором, водородом, водой. Укажите окислитель и восстановитель.
  • I I вариант: Напишите уравнения реакции взаимодействия лития с кислородом, хлором, водородом, водой. Укажите окислитель и восстановитель.
  • I I I вариант: Напишите уравнения реакции взаимодействия калия с кислородом, хлором, водородом, водой. Укажите окислитель и восстановитель.

Учитель: Тема нашего урока “Щелочноземельные металлы”

Задачи урока: Дать общую характеристику щелочноземельным металлам.

Рассмотреть их электронное строение, сравнить физические и химические свойства.

Узнать о важнейших соединениях этих металлов.

Определить области применения этих соединений.

Наш план урока написан на доске, будем работать соответственно плана, просмотрим презентацию .

  1. Положение металлов в периодической системе Д.И. Менделеева.
  2. Строение атома щелочных металлов.
  3. Физические свойства.
  4. Химические свойства.
  5. Применение щелочноземельных металлов.

Беседа.

Учитель:

Исходя, из полученных ранее знаний ответим на следующие вопросы: Для ответа воспользуемся периодической системой химических элементов Д.И. Менделеева.

1. Перечислите щелочноземельные металлы

Ученик:

Это магний, кальций, стронций, барий, радий.

Учитель:

2. Почему данные металлы назвали щелочноземельными?

Ученик:

Происхождение этого названия связано с тем, что их гидроксиды являются щелочами, а оксиды по тугоплавкости сходны с оксидами алюминия и железа, носившими ранее общее название "земли"

Учитель:

3. Расположение щелочноземельные металлы в ПСХЭ Д.И. Менделеева.

Ученик:

II группа главная подгруппа. У металлов II группы главной подгруппы на внешнем энергетическом уровне содержится по 2 электрона, находящихся на меньшем удалении от ядра, чем у щелочных металлов. Поэтому их восстановительные свойства хотя и велики, но все же менее, чем у элементов I группы. Усиление восстановительных свойств также наблюдается при переходе от Mg к Ba, что связано с увеличением радиусов их атомов, во всех соединениях проявляют степень окисления +2.

Учитель: Физические свойства щелочноземельных металлов?

Ученик:

Металлы II группы главной подгруппы - это серебристо-белые вещества, хорошо проводящие тепло и электрический ток. Плотность их возрастает от Be к Ba, а температура плавления, наоборот, уменьшается. Они значительно тверже щелочных металлов. Все, кроме бериллия, обладают способностью окрашивать пламя в разные цвета.

Проблема: В каком виде щелочноземельные металлы встречаются в природе?

Почему в природе щелочноземельные металлы в основном существуют в виде соединений?

Ответ: В природе щелочноземельные металлы находятся в виде соединений, потому что обладают высокой химической активностью, которая в свою очередь, зависит от особенностей электронного строения атомов (наличие двух неспаренных электронов на внешнем энергетическом уровне)

Физкультминутка – отдых глазам.

Учитель:

Зная общие физические свойства, активность металлов, предположите химические свойства щелочноземельных металлов. С какими веществами взаимодействуют щелочные металлы?

Ученик:

Щелочноземельные металлы взаимодействуют как с простыми веществами, и сложными. Активно взаимодействуют почти со всеми неметаллами (с галогенами, водородом, образуя гидриды). Из сложных веществ с водой – образуя растворимые в воде основания – щелочи и с кислотами.

Учитель:

А теперь на опытах убедимся, в правильности наших предположениях о химических свойствах щелочноземельных металлов.

4. Лабораторная работа по виртуальной лаборатории.

Цель: провести реакции, подтверждающие химические свойства щелочноземельных металлов.

Повторяем правила техники безопасности для работы со щелочноземельными металлами.

  • работать в вытяжном шкафу
  • на подносе
  • сухими руками
  • брать в малых количествах

Работаем с текстом, который читаем по виртуальной лаборатории.

Опыт № 1.Взаимодействие кальция с водой.

Опыт № 2. Горение магния, кальция, стронция, бария

Записать уравнения реакции и наблюдения в тетрадь.

5. Подведение итогов урока, выставление оценок.

5. Рефлексия.

Что запомнилось на уроке, что понравилось.

6. Домашнее задание.

§ 12 упр.1(б) упр.4

Литература.

  1. Рудзитис Г.Е., Фельдман Ф.Г. Химия 9.- Москва.: Просвещение, 2001
  2. Габриелян О.С. Химия 9.-Москва.:Дрофа, 2008
  3. Габриелян О.С., Остроумов И.Г. Настольная книга учителя. Химия 9.-Москва.:Дрофа 2002
  4. Габриелян О.С. Контрольные и проверочные работы. Химия 9.-Москва.:Дрофа, 2005.
  5. Коллекция Виртуальной лаборатории. Учебное электронное издание